Welcome to UnicodeMathML

UnicodeMath is a linear representation of math that often resembles math notation and is easy to enter. For example, a/b is UnicodeMath for ab. It works well in Microsoft desktop apps such as Word, PowerPoint, Outlook, and OneNote but it hasn't been widely available elsewhere. This open-source applet implements UnicodeMath on the web.

1. Entering equations

You can enter equations in five ways:

  1. Enter UnicodeMath into the input (upper-left) window. The corresponding 2D built-up math displays in the output (upper-right) window and the MathML for it displays below the output window.
  2. Enter Nemeth braille, [La]TeX, or MathML into the input window. If the input window starts with a Unicode braille character (U+2800..U+28FF), Nemeth ASCII braille input is enabled. If the input starts with $, $$, \(, or \[, LaTeX input is enabled. If it starts with <math, MathML input is enabled.
  3. Enter UnicodeMath directly into the output window. This option builds up what you enter automatically, similarly to entry in the Microsoft Office apps. This option is a work in progress.
  4. Click on the Dictate button or type Alt+d, wait for the bell, and dictate the equation in English. You need to have Internet access, and you need to enunciate clearly. This option is also a work in progress but if you get it to work itโ€™s the fastest entry method except for:
  5. Paste MathML into the input or output window.

2. See and/or hear UnicodeMath in action

Click on the Demo button or type Alt+p in the input window to see UnicodeMath in action! Hit the space bar to pause the demo and hit it again to continue the demo. The arrow keys โ†’ and โ† move to the next/previous equation, respectively. Escape and Alt+p stop the demo. One of the equations has the UnicodeMath 1/2๐œ‹ โˆซ_0^2๐œ‹ โ…†๐œƒ/(๐‘Ž+๐‘ sinโก๐œƒ)=1/โˆš(๐‘Žยฒโˆ’๐‘ยฒ), which builds up to

12๐œ‹โˆซ02๐œ‹๐‘‘๐œƒ๐‘Ž+๐‘sinโก๐œƒ=1๐‘Ž2โˆ’๐‘2

To speak the equations, type the space bar to pause the demo, type Alt+s to speak the current equation, and then type the right arrow key to advance to the next equation. Alternatively, type Alt+Enter to enter the current Examples equation (and advance the Examples equation ID), and type Alt+s to speak the equation. In these ways, you can cycle through the equations speaking each one.

You can click on an example in the Examples gallery to enter it and the following control words enter the UnicodeMath for selected examples (handy for quick entry on smaller screens):

Control Word UnicodeMath
\absvalue |๐‘ฅ|=โ’ธ("ifย "๐‘ฅ>=&0,&๐‘ฅ@"ifย "๐‘ฅ<&0,&-๐‘ฅ)
\Faraday ๐›โจฏ๐„=โˆ’๐œ•๐/๐œ•๐‘ก
\Fourier ๐‘“ฬ‚(๐œ‰)=โˆซ_-โˆž^โˆž ๐‘“(๐‘ฅ)โ…‡^-2๐œ‹โ…ˆ๐‘ฅ๐œ‰ โ…†๐‘ฅ
\integral 1/2๐œ‹ โˆซ_0^2๐œ‹ โ…†๐œƒ/(๐‘Ž+๐‘ sinโก๐œƒ)=1/โˆš(๐‘Žยฒโˆ’๐‘ยฒ)
\integralG โˆซ_-โˆž^โˆž ๐‘’^-๐‘ฅยฒ โ…†๐‘ฅ=โˆš๐œ‹
\limit lim_(๐‘›โ†’โˆž) (1+1/๐‘›)^๐‘›=๐‘’
\plasma ๐‘(๐›พ+๐‘–๐œ”โˆ’๐‘–๐œˆ)=๐‘–/โˆš๐œ‹ โˆซ_โˆ’โˆž^โˆž ๐‘’^(โˆ’(๐œ”โˆ’๐œ”โ€ฒ)^2 /(ฮ”๐œ”)^2)/(๐›พ+๐‘–(๐œ”โ€ฒโˆ’๐œˆ)) โ…†๐œ”โ€ฒ
\quadratic ๐‘ฅ=(โˆ’๐‘ยฑโˆš(๐‘ยฒโˆ’4๐‘Ž๐‘))/2๐‘Ž
\SHO ๐‘ฅฬˆ+2๐›พ๐‘ฅฬ‡+๐œ”ยฒ๐‘ฅ=0
\waveeq ๐‘–โ„ ๐œ•๐œ“(๐‘ฅ,๐‘ก)/๐œ•๐‘ก =[โˆ’โ„ยฒ/2๐‘š ๐œ•ยฒ/๐œ•๐‘ฅยฒ+๐‘‰(๐‘ฅ,๐‘ก)]๐œ“(๐‘ฅ,๐‘ก)

3. Entering symbols

You can enter a symbol by clicking on the symbol in one of the symbol galleries below the input window. But itโ€™s faster to type the symbolโ€™s LaTeX control word such as \alpha for ฮฑ. After typing two letters, you get a math autocomplete dropdown with possible matches. This lets you enter the selected symbol (the one highlighted in blue) quickly by typing Enter or Tab.

For example, if you type \al, you see

Typing the Enter or Tab key inserts ๐›ผ. If you want a different symbol in the dropdown, you can click on it, or you can use the up/down (โ†‘โ†“) arrow keys to select the symbol you want and type the Enter or Tab key to enter it.

The math autocomplete menu helps you discover a LaTeX control word, and it speeds entry especially for long control words such as those in the dropdown

The control-word dictionary includes some control-word aliases, such as \union for \cup (โˆช), since you might not guess \cup is the LaTeX control word for the union operator โˆช.

4. Entering math alphanumerics

Unicode has many math styled characters, such as the math fraktur H (โ„Œ). They can be entered by selecting the letter(s) in the input or output windows and clicking on the ๐”„๐”…โ„ญ button or other math-style button. You can also enter a character in the Math styles text box and click on the desired math style button.

Or you can enter the control words for the desired characters. The math-style control words consist of a math-style prefix followed by the unstyled character. For example, the prefix "mbf" (math boldface) defines the bold math style and the control word \mbfH gives a bold H, that is, ๐‡. The math-style prefixes are defined in the table

Math Style Prefix Math Style Prefix
normal mup bold mbf
italic mit bold-italic mbfit
double-struck Bbb bold-fraktur mbffrak
script mscr bold-script mbfscr
fraktur mfrak sans-serif msans
bold-sans-serif mbfsans sans-serif-italic mitsans
sans-serif-bold-italic mbfitsans monospace mtt
chancery mchan roundhand mrhnd
isolated misol initial minit
tailed mtail looped mloop
stretched mstrc

Here roundhand and chancery are two script styles, and isolated, initial, tailed, looped, and stretched are Arabic math styles. Currently the Arabic math styles require the XITS Math font and the chancery and roundhand variants require the STIX Two Math font.

5. Character code points

Below the input window, thereโ€™s a Unicode codepoint window that displays the codepoints of the input symbols above the symbols. This is particularly useful for comparing two strings that appear to be identical but differ in one or more characters. Both the input and output windows support the Alt+x symbol entry method popular in Microsoft Word, OneNote, and NotePad. (It should be supported in all editors ๐Ÿ˜Š). For example, type 222b Alt+x to insert โˆซ.

6. Speech, braille, LaTeX, dictation

In addition to generating MathML, you can click on buttons or enter a hot key to

The results for speech, braille and LaTeX are displayed below the input window. Dictation results are shown in the input, output, and MathML windows. Dictation hint: wait for the start beep (else the first word(s) might be missing) and enunciate clearly.

7. Math display

The math is rendered in the output window either natively or by MathJax according to a setting (click on the โš™๏ธŽ to change it). MathJaxโ€™s typography resembles LaTeXโ€™s. The native rendering is good although not yet as good as LaTeX. But an advantage of the native renderer is that you can edit built-up equations directly in the output window and copy all or part of an equation. If the selection is an insertion point, the whole equation is copied. The only editing feature in the MathJax mode is Ctrl+c, which copies the MathML for the whole equation to the clipboard.

8. Navigating the app

A mouse or touchpad provides one way to move between and inside the various facilities. Another way is to use the Tab key. Since the app has myriad default Tab stops, users need a Tab hierarchy. The top of the hierarchy has the menu stops Help, Demo, Speak, Braille, TeX, Dictate, and About, followed by the Input and Output windows, Settings, History, math styles, and the symbol galleries. The galleries appear in alphabetical order, Accents, Arrows, Binary, etc. The Tab key navigates these stops in the forward direction, while Shift+Tab navigates in the backward direction. The Enter key activates the current stop's facility. In an activated facility, the left and right arrow keys move between the facility's options. The Enter key then runs the option. For an active symbol gallery, the Enter key inserts the current symbol. For most settings, the Enter key toggles the current option. For menu stops, the Enter key sends the associated hot key. Each change is accompanied by explanatory speech.

9. UnicodeMath editing

When you type UnicodeMath into the input window, various conversions occur in the input window (except inside a quoted literal):

It's easier to type โˆ’> to get โ†’ than \rightarrow, although with math autocomplete you only need to type \ri<โ€‹tab> to get โ†’. Similarly, typing +- is easy for getting ยฑ. Many of these operator pairs are listed in the following table.

Pair Symbol Pair Symbol
+- ยฑ -+ โˆ“
/= โ‰  /~ โ‰
<โ€‹= โ‰ค >= โ‰ฅ
~= โ‰… ~~ โ‰ˆ
:: โˆท := โ‰”
<< โ‰ช >> โ‰ซ
+โˆ’ ยฑ โˆ’+ โˆ“
โˆ’> โ†’ <โˆ’ โ†
!! โ€ผ ... โ€ฆ
โ‰ฏ= โ‰ฑ โ‰ฎ= โ‰ฐ
โŠ€= โชฑ โЁ= โชฒ
โŠ„= โŠˆ โŠ…= โЉ
/< โ‰ฎ /> โ‰ฏ

The combination <โ€‹โˆ’ gives โ†. If you want to enter an expression like ๐‘Ž<โˆ’๐‘, put a space between the < and -.

These conversions aren't needed in the input window, but they make the input more readable. They also help in creating good looking UnicodeMath expressions for use in plain-text scenarios.

10. LaTeX and MathML editing

When you type LaTeX or MathML into the input window, control words for Unicode symbols are autocorrected to the symbols, and various operator pairs are converted to Unicode operators. For example, '$\alpha/=\beta' โ†’ '$๐›ผโ‰ ๐›ฝ'.

To facilitate entry, for LaTeX typing a { also inserts the closing }, and for MathML typing an opening tag also inserts the closing tag. Type Ctrl+โ†’ to bypass a tag.

11. Editing hot keys

Hotย key Function
Ctrl+b Toggle the bold attribute. For example, select ๐‘Ž (U+1D44E), type Ctrl+b and get ๐’‚ (U+1D482) as you can verify in the codepoint window.
Ctrl+c Copy the selected text to the clipboard.
Alt+h Display the help page.
Ctrl+i Toggle the italic attribute. If applied to a math italic character, this changes the character to the UnicodeMath way of representing ordinary text, i.e., put it inside quotes as in select ๐‘Ž, Ctrl+i โ†’ โ€œaโ€.
Alt+m Toggle between displaying 1) UnicodeMath in the input window and MathML below the output window, and 2) MathML in the input window and UnicodeMath below the output window.
Ctrl+v Paste plain text from the clipboard. If the text starts with <math, <m:math, or <mml:math, the text is treated as MathML and builds up.
Ctrl+x Copy the selected text to the clipboard, then delete the selected text.
Ctrl+y Redo
Ctrl+z Undo

12. Symbol galleries

Unicode has almost all math symbols in use today. The symbol galleries located at the bottom of the web page contain the most common math symbols. You can enter a symbol in a gallery by clicking on it or by typing its control word as described in the Entering symbols section above.

Hovering over a symbol displays a tooltip with information about the symbol, specifically the Unicode code point, name, and block, as well as a LaTeX control word for entering the symbol, the symbol's math class, and the Nemeth braille sequence (if defined). The symbol's Unicode category is defined in Table 4-4 of the Unicode Standard and the symbol's math class is defined in the comments of MathClass.txt, a file for Unicode Technical Report #25: Unicode Support for Mathematics. For example, hovering a script X (๐’ณ) displays

Here the category "Lu" stands for upper-case letter and the math class "A" stands for alphabetic.

13. Output window editing

You can enter equations and edit the built-up display in the output window as shown in this video

This "in-place" editing mimics the math editing experience in desktop Microsoft Word, Outlook, PowerPoint, and OneNote, and in the Windows Calculator. The hot keys listed above work here too, as do the symbol galleries and the math autocomplete menus. The copy hot key, Ctrl+c, copies the MathML for the selected content into the plain-text copy slot, rather than copying the underlying plain text. This enables you to paste built-up math equations into Word and other apps that interpret "plain-text" MathML as MathML rather than as plain text. Note: math autobuildup works with native MathML rendering; if MathJax is active, only Ctrl+c works.

The implementation uses JavaScript to manipulate the MathML in the browser DOM.

14. Intents

UnicodeMathML generates Presentation MathML 4. A key addition in MathML 4 is the intent attribute, which allows authors to disambiguate math notation and control math speech.

For example, does |๐‘ฅ| mean the absolute value of ๐‘ฅ or the cardinality of ๐‘ฅ? Absolute value is assumed by default since absolute value is more common than cardinality. The default MathML for |x| is

<mrow intent="absolute-value(๐‘ฅ)">
  <mo>|</mo><mi>๐‘ฅ</mi><mo>|</mo></mrow>.

To specify cardinality, enter \card(x) (or โ“’(x)). These inputs produce the MathML

<mrow intent="cardinality(๐‘ฅ)">
  <mo>|</mo><mi>๐‘ฅ</mi><mo>|</mo></mrow>.

If you enter an absolute value or cardinality containing more than one symbol as in |a+b|, the MathML intent contains an argument reference $a. For |a+b|, the MathML is

<mrow intent="absolute-value($a)">
  <mo>|</mo>
    <mrow arg="a">
      <mi>๐‘Ž</mi><mo>+</mo><mi>๐‘</mi></mrow>
  <mo>|</mo></mrow>

A matrix enclosed in vertical bars is treated as a determinant. For example, the UnicodeMath |โ– (a&b@c&d)| builds up to

|๐‘Ž๐‘๐‘๐‘‘|

which has the MathML

<mrow intent="determinant($a)">
  <mo>|</mo>
    <mtable arg="a">
      <mtr>
        <mtd><mi>๐‘Ž</mi></mtd><mtd><mi>๐‘</mi></mtd></mtr>
      <mtr><mtd><mi>๐‘</mi></mtd><mtd><mi>๐‘‘</mi></mtd></mtr></mtable>
  <mo>|</mo></mrow>.

The program infers intent attributes for absolute value and determinant, so only cardinality needs to be input without vertical bars. Note that the ambiguous expression |๐‘Ž|๐‘+๐‘|๐‘‘| is assumed to be (|๐‘Ž|)๐‘+๐‘(|๐‘‘|). If you want |๐‘Ž(|๐‘+๐‘|)๐‘‘|, enter |(๐‘Ž|๐‘+๐‘|๐‘‘)| and the parentheses will be removed.

As we see here, some intent attribute values are implied by the input notations of LaTeX and UnicodeMath. Others are implied by context. Still others must be declared explicitly by the content author, by a math-knowledgeable copy editor, or maybe eventually by AI.

15. Author intents

Since most content authors donโ€™t know MathML, we need a way to allow them to enter intents easily. To this end, UnicodeMathML has an output-window context-menu option that lets you tag entities with intents. For example, right-clicking on the ๐ธ in ๐ธ = ๐‘š๐‘ยฒ, you get the input box

and you can type in โ€œenergyโ€ or whatever you want followed by the Enter key. If you type in โ€œenergyโ€, the resulting MathML is

<mrow>
  <mi intent="energy">๐ธ</mi>
  <mo>=</mo>
  <mrow>
    <mi>๐‘š</mi>
    <msup><mi>๐‘</mi>
    <mn>2</mn></msup></mrow></mrow>

Typing Atl+d speaks this as "energy equals m c squared".

16. TeX macros

You can use [La]TeX macros with [La]TeX input. Simple examples are:

Macro Use Result
\def\f{x_1+...+x_n} \f ๐‘ฅโ‚+โ‹ฏ+๐‘ฅ_๐‘›
\def\g#1#2{#1+#2} \g ab ๐‘Ž + ๐‘

The last equation in the Examples gallery is LaTeX that defines a macro and then uses it:

\[\def\g#1#2{#1f(#2)}\g\relax{x}=\int_{-\infty}^\infty \g\hat\xi,e^{2 \pi i \xi x} ,d\xi\]

This displays as

๐‘“(๐‘ฅ)=โˆซโˆ’โˆžโˆž๐‘“ฬ‚(๐œ‰)๐‘’2๐œ‹๐‘–๐œ‰๐‘ฅ๐‘‘๐œ‰

The LaTeX \newcommand syntax is also supported.

17. UnicodeMath selection attributes

Technical stuff: When you edit the output window, the resulting MathML includes attributes that represent the state of the user selection. These attributes have been added partly because they are needed to make editing accessible. The attribute "selanchor" defines the selection "anchor" end (the nonmoving end) and "selfocus" defines the selection active end, e.g., the end that moves with Shift+โ†’. The attribute values define the offsets for the selection setBaseAndExtent method. If the selection is an insertion point (a degenerate selection), only selanchor is included since the anchor and focus ends coincide.

Corresponding constructs have been added to UnicodeMath to represent the selection state. They are needed for the multilevel undo facility, which saves back states by caching the back-state UnicodeMath strings. The enclosure โ’ถ(offset) defines the position of the selection anchor and the enclosure โ’ป(offset) defines the position of the selection focus. If no offset appears, 0 is assumed. To increase readability, these enclosures are not included in the UnicodeMath displayed in the input window. Nondegenerate selections have the focus enclosure as well, as in the UnicodeMath "โ’ถ()โ’ป(1)โฌš" for the selected "โฌš".

A negative offset is used if the selection construct refers to a text node. The absolute value of a negative offset gives the offset into a string. For example, <mi selanchor="-1">sin</mi> sets the anchor to the "i" in "sin". Positive attribute values give the index of a child element. So, <mi selanchor="1">sin</mi> places the anchor immediately following "sin".

18. Control words

To facilitate entering Unicode symbols, control words can be used as discussed in Sec. 3. The following is a table of control words for Unicode math symbols not including the math alphanumerics discussed in Sec. 4. For a more complete list, see unimath-symbols. Circled and parenthesized symbols index the Examples in the Playground. E.g., \Faraday gives โ‘ญ, which inserts the fourteenth Example: ๐›โจฏ๐„=โˆ’๐œ•๐/๐œ•๐‘ก. Circled letters are special UnicodeMath operators that build up to bracketed matrices, fractions, absolute values, cardinality, cases, binomial coefficients, etc.

Control word Symbol Codepoint Comment
2root โˆš 221A
3root โˆ› 221B
4root โˆœ 221C
Angstrom โ„ซ 212B
Bar ฬฟ 033F
Biconditional โ‡” 21D4
Bmatrix โ“ˆ 24C8 UnicodeMath op
Bumpeq โ‰Ž 224E
Cap โ‹’ 22D2
Colon โˆท 2237
Cup โ‹“ 22D3
Dd โ…… 2145
Delta ฮ” 0394
Deltaeq โ‰œ 225C
Digamma ฯœ 03DC
Doteq โ‰‘ 2251
Downarrow โ‡“ 21D3
Faraday โ‘ญ 2470 ๐›โจฏ๐„=โˆ’๐œ•๐/๐œ•๐‘ก
Fourier โ‘ค 2464 ๐‘“ฬ‚(๐œ‰)=โˆซ_-โˆž^โˆž ๐‘“(๐‘ฅ)โ…‡^-2๐œ‹โ…ˆ๐‘ฅ๐œ‰ โ…†๐‘ฅ
Gamma ฮ“ 0393
Im โ„‘ 2111
Implication โ‡’ 21D2
Implies โ‡’ 21D2
Intersection โ‹‚ 22C2
InverseFT โ’ 2481 LaTeX example
Join โจ 2A1D
Lambda ฮ› 039B
Langle โŸช 27EA
Lbrack โŸฆ 27E6
Leftarrow โ‡ 21D0
Leftrightarrow โ‡” 21D4
Lleftarrow โ‡š 21DA
Longleftarrow โŸธ 27F8
Longleftrightarrow โŸบ 27FA
Longrightarrow โŸน 27F9
Lsh โ†ฐ 21B0
Omega ฮฉ 03A9
Phi ฮฆ 03A6
Pi ฮ  03A0
Psi ฮจ 03A8
Rangle โŸซ 27EB
Rbrack โŸง 27E7
Re โ„œ 211C
Rightarrow โ‡’ 21D2
Rrightarrow โ‡› 21DB
Rsh โ†ฑ 21B1
SHO โ‘ฝ 247D ๐‘ฅฬˆ+2๐›พ๐‘ฅฬ‡+๐œ”ยฒ๐‘ฅ=0
Sigma ฮฃ 03A3
Subset โ‹ 22D0
Supset โ‹‘ 22D1
Theta ฮ˜ 0398
Ubar ฬณ 0333
Union โ‹ƒ 22C3
Uparrow โ‡‘ 21D1
Updownarrow โ‡• 21D5
Upsilon ฮฅ 03A5
VDash โŠซ 22AB
Vdash โŠฉ 22A9
Vert โ€– 2016
Vmatrix โ’ฉ 24A9 UnicodeMath op
Vvdash โŠช 22AA
Xi ฮž 039E
above โ”ด 2534
abs โ’œ 249C UnicodeMath op
absvalue โ‘จ 2468 |๐‘ฅ|=โ’ธ("ifย "๐‘ฅ>=&0,&๐‘ฅ@"ifย "๐‘ฅ<&0,&-๐‘ฅ)
acute ฬ 0301
adjoint โ€  2020
ain ุน 0639
alef ุง 0627
aleph โ„ต 2135
alpha ฮฑ 03B1
amalg โˆ 2210
and โˆง 2227
angle โˆ  2220
angmsd โˆก 2221
angrtvb โŠพ 22BE
angsph โˆข 2222
aoint โˆณ 2233
approx โ‰ˆ 2248
approxeq โ‰Š 224A
arc โœ 23DC
arg โ“ 24D0 UnicodeMath op
asmash โฌ† 2B06
ast โˆ— 2217
asymp โ‰ 224D
atop ยฆ 00A6
backcolor โ˜ 2601
backepsilon ฯถ 03F6
backsim โˆฝ 223D
backsimeq โ‹ 22CD
bar ฬ… 0305
bcancel โ•ฒ 2572
because โˆต 2235
beh ุจ 0628
begin ใ€– 3016
belongs โˆˆ 2208
below โ”ฌ 252C
beta ฮฒ 03B2
beth โ„ถ 2136
between โ‰ฌ 226C
biconditional โ†” 2194
bigcap โ‹‚ 22C2
bigcup โ‹ƒ 22C3
bigintersection โ‹‚ 22C2
bigodot โจ€ 2A00
bigoplus โจ 2A01
bigotimes โจ‚ 2A02
bigsqcap โจ… 2A05
bigsqcup โจ† 2A06
bigudot โจƒ 2A03
biguplus โจ„ 2A04
bigunion โ‹ƒ 22C3
bigvee โ‹ 22C1
bigwedge โ‹€ 22C0
binom โ’ 249D UnicodeMath op
binomial โ‘ง 2467 (๐‘Ž+๐‘)^๐‘›=โˆ‘_(๐‘˜=0)^๐‘› ๐‘›โ’ž๐‘˜ ๐‘Ž^๐‘˜ ๐‘^(๐‘›โˆ’๐‘˜)
bmatrix โ“ข 24E2 UnicodeMath op
bot โŠฅ 22A5
bowtie โ‹ˆ 22C8
box โ–ก 25A1
boxdot โŠก 22A1
boxed โ–ญ 25AD
boxminus โŠŸ 229F
boxplus โŠž 229E
boxtimes โŠ  22A0
bra โŸจ 27E8
breve ฬ† 0306
bullet โˆ™ 2219
bumpeq โ‰ 224F
by ร— 00D7
cancel โ•ฑ 2571
cap โˆฉ 2229
card โ“’ 24D2 UnicodeMath op
cases โ’ธ 24B8 UnicodeMath op
cbrt โˆ› 221B
ccwint โจ‘ 2A11
cdot โ‹… 22C5
cdots โ‹ฏ 22EF
cents ยข 00A2
check ฬŒ 030C
chi ฯ‡ 03C7
choose โ’ž 249E UnicodeMath op
circ โˆ˜ 2218
circeq โ‰— 2257
circle โ—ฏ 25EF
circlearrowleft โ†บ 21BA
circlearrowright โ†ป 21BB
circledast โŠ› 229B
circledcirc โŠš 229A
circleddash โŠ 229D
circledequal โŠœ 229C
close โ”ค 2524
clubsuit โ™ฃ 2663
coint โˆฒ 2232
colon โˆถ 2236
color โœŽ 270E
comp โˆ˜ 2218
complement โˆ 2201
cong โ‰… 2245
contains โˆ‹ 220B
contradiction โŠฅ 22A5
coprod โˆ 2210
corr ฯ 03C1
cross โจฏ 2A2F
cup โˆช 222A
curlyeqprec โ‹ž 22DE
curlyeqsucc โ‹Ÿ 22DF
curlyvee โ‹Ž 22CE
curlywedge โ‹ 22CF
curvearrowleft โ†ถ 21B6
curvearrowright โ†ท 21B7
cwint โˆฑ 2231
dad ุถ 0636
dag โ€  2020
dagger โ€  2020
dal ุฏ 062F
daleth โ„ธ 2138
dashleftarrow โ‡  21E0
dashrightarrow โ‡ข 21E2
dashv โŠฃ 22A3
dd โ…† 2146
ddag โ€ก 2021
ddagger โ€ก 2021
ddddot โƒœ 20DC
dddot โƒ› 20DB
ddot ฬˆ 0308
ddots โ‹ฑ 22F1
def โ“œ 24DC UnicodeMath op
defeq โ‰ 225D
deg ยฐ 00B0
degc โ„ƒ 2103
degf โ„‰ 2109
degree ยฐ 00B0
delta ฮด 03B4
det โ’ฑ 24B1 UnicodeMath op
diamond โ‹„ 22C4
diamondsuit โ™ข 2662
directsum โŠ• 2295
displaystyle โ““ 24D3 UnicodeMath op
div รท 00F7
divide โˆฃ 2223
divideontimes โ‹‡ 22C7
dot ฬ‡ 0307
doteq โ‰ 2250
dotminus โˆธ 2238
dotplus โˆ” 2214
dots โ€ฆ 2026
doubleH โ„ 210D
doubleint โˆฌ 222C
doubleprime โ€ณ 2033
downarrow โ†“ 2193
downdownarrows โ‡Š 21CA
downharpoonleft โ‡ƒ 21C3
downharpoonright โ‡‚ 21C2
dprime โ€ณ 2033
dsmash โฌ‡ 2B07
ee โ…‡ 2147
eight 8 0038
element โˆˆ 2208
ell โ„“ 2113
ellipse โฌญ 2B2D
emptyset โˆ… 2205
emsp 2003
end ใ€— 3017
endproof โˆŽ 220E
ensp 2002
entailment โŠจ 22A8
epar โ‹• 22D5
epsilon ฯต 03F5
eqalign โ–ˆ 2588
eqarray โ–ˆ 2588
eqcirc โ‰– 2256
eqgtr โ‹ 22DD
eqless โ‹œ 22DC
eqno # 0023
equalparallel โ‹• 22D5
equiv โ‰ก 2261
eta ฮท 03B7
eth รฐ 00F0
euler โ„‡ 2107
exists โˆƒ 2203
expect ๐”ผ 1D53C
fallingdotseq โ‰’ 2252
false โŠฅ 22A5
feh ู 0641
five 5 0035
forall โˆ€ 2200
forces โŠฉ 22A9
foreach โˆ€ 2200
forsome โˆƒ 2203
four 4 0034
frac โ 2134
frakturH โ„Œ 210C
frown โŒข 2322
fullouterjoin โŸ— 27D7
funcapply โก 2061
ghain ุบ 063A
gamma ฮณ 03B3
ge โ‰ฅ 2265
geq โ‰ฅ 2265
geqq โ‰ง 2267
gets โ† 2190
gg โ‰ซ 226B
ggg โ‹™ 22D9
gimel โ„ท 2137
gneqq โ‰ฉ 2269
gnsim โ‹ง 22E7
grad โˆ‡ 2207
grave ฬ€ 0300
gtrdot โ‹— 22D7
gtreqless โ‹› 22DB
gtrless โ‰ท 2277
gtrsim โ‰ณ 2273
hadamard โŠ™ 2299
hah ุญ 062D
hairsp 200A
half ยฝ 00BD
hat ฬ‚ 0302
hbar โ„ 210F
heartsuit โ™ก 2661
heh ู‡ 0647
hookleftarrow โ†ฉ 21A9
hookrightarrow โ†ช 21AA
hourglass โณ 23F3
hphantom โฌ„ 2B04
hsmash โฌŒ 2B0C
hvec โƒ‘ 20D1
identity ๐ˆ 1D408
iff โŸบ 27FA
ii โ…ˆ 2148
iiiint โจŒ 2A0C
iiint โˆญ 222D
iint โˆฌ 222C
imath ฤฑ 0131
implication โ†’ 2192
implies โ†’ 2192
in โˆˆ 2208
inc โˆ† 2206
infinity โˆž 221E
infty โˆž 221E
int โˆซ 222B
integral โ‘ฆ 2466 1/2๐œ‹ โˆซ_0^2๐œ‹ โ…†๐œƒ/(๐‘Ž+๐‘ sinโก๐œƒ)=1/โˆš(๐‘Žยฒโˆ’๐‘ยฒ)
integralG โ‘ช 246A โˆซ_-โˆž^โˆž ๐‘’^-๐‘ฅยฒ โ…†๐‘ฅ=โˆš๐œ‹
intent โ“˜ 24D8 UnicodeMath op
intercal โŠบ 22BA
intersection โˆฉ 2229
iota ฮน 03B9
iplus โค 2064
isep โฃ 2063
itimes โข 2062
intercal โŠบ 22BA
jeem ุฌ 062C
jj โ…‰ 2149
jmath ศท 0237
join โ‹ˆ 22C8
kaf ูƒ 0643
kappa ฮบ 03BA
ket โŸฉ 27E9
khah ุฎ 062E
kron โŠ— 2297
labove โ”” 2514
lam ู„ 0644
lambda ฮป 03BB
land โˆง 2227
langle โŸจ 27E8
laplace โˆ† 2206
lbbrack โŸฆ 27E6
lbelow โ”Œ 250C
lbrace { 007B
lbrack [ 005B
lceil โŒˆ 2308
ldiv โˆ• 2215
ldivide โˆ• 2215
ldots โ€ฆ 2026
ldsh โ†ฒ 21B2
le โ‰ค 2264
left โ”œ 251C
leftarrow โ† 2190
leftarrowtail โ†ข 21A2
leftharpoondown โ†ฝ 21BD
leftharpoonup โ†ผ 21BC
leftleftarrows โ‡‡ 21C7
leftouterjoin โŸ• 27D5
leftrightarrow โ†” 2194
leftrightarrows โ‡† 21C6
leftrightharpoons โ‡‹ 21CB
leftrightwavearrow โ†ญ 21AD
leftsquigarrow โ‡œ 21DC
leftthreetimes โ‹‹ 22CB
leftwavearrow โ†œ 219C
leq โ‰ค 2264
leqq โ‰ฆ 2266
lessdot โ‹– 22D6
lesseqgtr โ‹š 22DA
lessgtr โ‰ถ 2276
lesssim โ‰ฒ 2272
lfloor โŒŠ 230A
lhvec โƒ 20D0
limit โ‘ซ 246B lim_(๐‘›โ†’โˆž) (1+1/๐‘›)^๐‘›=๐‘’
ll โ‰ช 226A
lll โ‹˜ 22D8
lmoust โŽฐ 23B0
lneqq โ‰จ 2268
lnot ยฌ 00AC
lnsim โ‹ฆ 22E6
longdiv โŸŒ 27CC
longleftarrow โŸต 27F5
longleftrightarrow โŸท 27F7
longmapsto โŸผ 27FC
longmapstoleft โŸป 27FB
longrightarrow โŸถ 27F6
looparrowleft โ†ซ 21AB
looparrowright โ†ฌ 21AC
lor โˆจ 2228
lparen ( 0028
lrhar โ‡‹ 21CB
ltimes โ‹‰ 22C9
lvec โƒ– 20D6
lvert | 007C
mapsto โ†ฆ 21A6
mapstoleft โ†ค 21A4
mathparagraph ยถ 00B6
matrix โ–  25A0
mean ฮผ 03BC
measangle โˆก 2221
medsp 205F
meem ู… 0645
meq โ‰ž 225E
mid โˆฃ 2223
models โŠจ 22A8
mp โˆ“ 2213
mu ฮผ 03BC
multimap โŠธ 22B8
owns โˆ‹ 220B
nLeftarrow โ‡ 21CD
nLeftrightarrow โ‡Ž 21CE
nRightarrow โ‡ 21CF
nVDash โŠฏ 22AF
nVdash โŠฎ 22AE
nabla โˆ‡ 2207
nand โŠผ 22BC
napprox โ‰‰ 2249
naryand โ–’ 2592
nasymp โ‰ญ 226D
nbsp \u00A0 00A0
ncong โ‰‡ 2247
ndiv โŠ˜ 2298
ne โ‰  2260
nearrow โ†— 2197
neg ยฌ 00AC
neq โ‰  2260
nequiv โ‰ข 2262
nexists โˆ„ 2204
newcommand โ“œ 24DC UnicodeMath op
ngeq โ‰ฑ 2271
ngt โ‰ฏ 226F
ni โˆ‹ 220B
nine 9 0039
nleftarrow โ†š 219A
nleftrightarrow โ†ฎ 21AE
nleq โ‰ฐ 2270
nless โ‰ฎ 226E
nlt โ‰ฎ 226E
nmid โˆค 2224
nodotbeh ูฎ 066E
nodotqaf ูฏ 066F
nodotfeh ฺก 06A1
nodotnoon ฺบ 06BA
noon ู† 0646
nor โŠฝ 22BD
norm โ€– 2016
not / 002F
notapprox โ‰‰ 2249
notcong โ‰‡ 2247
notdivide โˆค 2224
notgeq โ‰ฑ 2271
notgt โ‰ฏ 226F
notin โˆ‰ 2209
notleq โ‰ฐ 2270
notlt โ‰ฎ 226E
notni โˆŒ 220C
notsubset โŠ„ 2284
notsubseteq โŠˆ 2288
notsuperset โŠ… 2285
notsuperseteq โЉ 2289
nparallel โˆฆ 2226
nprec โŠ€ 2280
npreccurlyeq โ‹  22E0
nrightarrow โ†› 219B
nsim โ‰ 2241
nsimeq โ‰„ 2244
nsqsubseteq โ‹ข 22E2
nsqsupseteq โ‹ฃ 22E3
nsub โŠ„ 2284
nsubseteq โŠˆ 2288
nsucc โЁ 2281
nsucccurlyeq โ‹ก 22E1
nsup โŠ… 2285
nsupseteq โЉ 2289
ntriangleleft โ‹ช 22EA
ntrianglelefteq โ‹ฌ 22EC
ntriangleright โ‹ซ 22EB
ntrianglerighteq โ‹ญ 22ED
nu ฮฝ 03BD
numsp 2007
nvDash โŠญ 22AD
nvdash โŠฌ 22AC
nwarrow โ†– 2196
oast โŠ› 229B
ocirc โŠš 229A
odash โŠ 229D
odot โŠ™ 2299
oeq โŠœ 229C
of โ–’ 2592 UnicodeMath op
oiiint โˆฐ 2230
oiint โˆฏ 222F
oint โˆฎ 222E
omega ฯ‰ 03C9
ominus โŠ– 2296
one 1 0031
oo โˆž 221E
open โ”œ 251C
oplus โŠ• 2295
or โˆจ 2228
oslash โŠ˜ 2298
otimes โŠ— 2297
over / 002F
overbar ยฏ 00AF
overbrace โž 23DE
overbracket โŽด 23B4
overline ยฏ 00AF
overparen โœ 23DC
overshell โ  23E0
parallel โˆฅ 2225
parallelogram โ–ฑ 25B1
partial โˆ‚ 2202
perp โŠฅ 22A5
phantom โŸก 27E1
phi ฯ• 03D5
pi ฯ€ 03C0
pitchfork โ‹” 22D4
planck โ„ 210F alias for hbar
plasma โ‘ฟ 247F ๐‘(๐›พ+๐‘–๐œ”โˆ’๐‘–๐œˆ)=... (see Sec. 2 for formula)
pm ยฑ 00B1
pmatrix โ’จ 24A8 UnicodeMath op
powerset โ„˜ 2118
pppprime โ— 2057
ppprime โ€ด 2034
pprime โ€ณ 2033
prcue โ‰ผ 227C
prec โ‰บ 227A
preccurlyeq โ‰ผ 227C
preceq โชฏ 2AAF
precneq โชฑ 2AB1
precnsim โ‹จ 22E8
precsim โ‰พ 227E
prime โ€ฒ 2032
prob โ„™ 2119
prod โˆ 220F
propto โˆ 221D
proves โŠข 22A2
psi ฯˆ 03C8
qaf ู‚ 0642
qdrt โˆœ 221C
qed โˆŽ 220E
qprime โ— 2057
quad 2003
quadprime โ— 2057
quadratic โ‘ฉ 24D9 ๐‘ฅ=(โˆ’๐‘ยฑโˆš(๐‘ยฒโˆ’4๐‘Ž๐‘))/2๐‘Ž
quarter ยผ 00BC
rad ใŽญ 33AD
rangle โŸฉ 27E9
ratio โˆถ 2236
ray โƒ— 20D7
rbbrack โŸง 27E7
rbelow โ” 2510
rbrace } 007D
rbrack ] 005D
rceil โŒ‰ 2309
rddots โ‹ฐ 22F0
rect โ–ญ 25AD
reh ุฑ 0631
relax โ“ 24DD UnicodeMath op
repeat ยฏ 00AF
repeating ยฏ 00AF
revpilcrow โ‹ 204B
rfloor โŒ‹ 230B
rho ฯ 03C1
rhvec โƒ‘ 20D1
right โ”ค 2524
rightangle โˆŸ 221F
rightarrow โ†’ 2192
rightarrowtail โ†ฃ 21A3
rightharpoondown โ‡ 21C1
rightharpoonup โ‡€ 21C0
rightleftarrows โ‡„ 21C4
rightleftharpoons โ‡Œ 21CC
rightouterjoin โŸ– 27D6
rightrightarrows โ‡‰ 21C9
rightthreetimes โ‹Œ 22CC
righttriangle โŠฟ 22BF
rightwavearrow โ† 219D
risingdotseq โ‰“ 2253
rlhar โ‡Œ 21CC
rmoust โŽฑ 23B1
root โ’ญ 24AD UnicodeMath op
rparen ) 0029
rrect โ–ข 25A2
rtimes โ‹Š 22CA
rtriangle โŠฟ 22BF
rvert | 007C
sad ุต 0635
sdiv โ„ 2044
sdivide โ„ 2044
searrow โ†˜ 2198
seen ุณ 0633
setminus โˆ– 2216
seven 7 0037
sheen ุด 0634
sigma ฯƒ 03C3
sim โˆผ 223C
simeq โ‰ƒ 2243
six 6 0036
smash โฌ 2B0D
smile โŒฃ 2323
spadesuit โ™  2660
sqcap โŠ“ 2293
sqcup โŠ” 2294
sqrt โˆš 221A
sqsubset โŠ 228F
sqsubseteq โŠ‘ 2291
sqsupset โА 2290
sqsupseteq โŠ’ 2292
star โ‹† 22C6
stddev ฯƒ 03C3
subset โŠ‚ 2282
subseteq โІ 2286
subsetneq โŠŠ 228A
subsetnoteq โŠŠ 228A
subsub โซ• 2AD5
subsup โซ“ 2AD3
succ โ‰ป 227B
succcurlyeq โ‰ฝ 227D
succeq โ‰ฝ 227D
succnsim โ‹ฉ 22E9
succsim โ‰ฟ 227F
sum โˆ‘ 2211
supset โŠƒ 2283
supseteq โЇ 2287
supsetneq โŠ‹ 228B
supsetnoteq โŠ‹ 228B
supsub โซ” 2AD4
supsup โซ– 2AD6
surd โˆš 221A
swarrow โ†™ 2199
tah ุท 0637
tau ฯ„ 03C4
tautology โŠค 22A4
thal ุฐ 0630
teh ุช 062A
text โ“ฃ 24E3 UnicodeMath op
textrm โ“ฃ 24E3 UnicodeMath op
theh ุซ 062B
theta ฮธ 03B8
thicksp \u2005 2005
thinsp 2009
third โ…“ 2153
three 3 0033
tilde ฬƒ 0303
times ร— 00D7
to โ†’ 2192
top โŠค 22A4
tprime โ€ด 2034
triangle โ–ณ 25B3
triangleleft โ— 25C1
trianglelefteq โŠด 22B4
triangleright โ–ท 25B7
trianglerighteq โŠต 22B5
tripleint โˆญ 222D
tripleprime โ€ด 2034
true โŠจ 22A8
turnedF โ„ฒ 2132
turnediota โ„ฉ 2129
tvec โƒก 20E1
two 2 0032
twoheadleftarrow โ†ž 219E
twoheadrightarrow โ†  21A0
ubar ฬฒ 0332
underbar โ– 2581
underbrace โŸ 23DF
underbracket โŽต 23B5
underline โ– 2581
underparen โ 23DD
undershell โก 23E1
union โˆช 222A
uparrow โ†‘ 2191
updownarrow โ†• 2195
updownarrows โ‡… 21C5
upharpoonleft โ†ฟ 21BF
upharpoonright โ†พ 21BE
uplus โŠŽ 228E
upsilon ฯ… 03C5
upuparrows โ‡ˆ 21C8
varepsilon ฮต 03B5
varkappa ฯฐ 03F0
varphi ฯ† 03C6
varpi ฯ– 03D6
varrho ฯฑ 03F1
varsigma ฯ‚ 03C2
vartheta ฯ‘ 03D1
vartriangleleft โŠฒ 22B2
vartriangleright โŠณ 22B3
vbar โ”‚ 2502
vdash โŠข 22A2
vdots โ‹ฎ 22EE
vec โƒ— 20D7
vectimes โจฏ 2A2F
vee โˆจ 2228
vert | 007C
vinculum ยฏ 00AF
vmatrix โ’ฑ 24B1 UnicodeMath op
vphantom โ‡ณ 21F3
vthicksp 2004
waveeq โ‘ณ 2473 ๐‘–โ„ ๐œ•๐œ“(๐‘ฅ,๐‘ก)/๐œ•๐‘ก =[โˆ’โ„ยฒ/2๐‘š ๐œ•ยฒ/๐œ•๐‘ฅยฒ+๐‘‰(๐‘ฅ,๐‘ก)]๐œ“(๐‘ฅ,๐‘ก)
waw ูˆ 0648
wedge โˆง 2227
widehat ฬ‚ 0302
widetilde ฬƒ 0303
wp โ„˜ 2118
wr โ‰€ 2240
xcancel โ•ณ 2573
xi ฮพ 03BE
xnor โŠ™ 2299
xor โŠ• 2295
yeh ูŠ 064A
zah ุธ 0638
zain ุฒ 0632
zero 0 0030
zeta ฮถ 03B6
zwnj โ€Œ 200C
zwsp โ€‹ 200B