
 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 1

UnicodeMath
A Nearly Plain-Text Encoding of Mathematics

Version 3.1
Murray Sargent III

 Microsoft Corporation
16-Nov-16

1. Introduction .. 2
2. Encoding Simple Math Expressions .. 3

2.1 Fractions .. 4
2.2 Subscripts and Superscripts... 6
2.3 Use of the Blank (Space) Character ... 8

3. Encoding Other Math Expressions .. 8
3.1 Delimiters .. 8
3.2 Literal Operators ... 11
3.3 Prescripts and Above/Below Scripts ... 11
3.4 n-ary Operators ... 12
3.5 Mathematical Functions ... 13
3.6 Square Roots and Radicals ... 14
3.7 Enclosures ... 14
3.8 Stretchy Characters ... 15
3.9 Matrices ... 16
3.10 Accent Operators ... 17
3.11 Differential, Exponential, and Imaginary Symbols 18
3.12 Unicode Subscripts and Superscripts .. 18
3.13 Concatenation Operators .. 18
3.14 Comma, Period, and Colon .. 18
3.15 Ordinary Text Inside Math Zones ... 19
3.16 Space Characters ... 19
3.17 Phantoms and Smashes .. 21
3.18 Arbitrary Groupings .. 22
3.19 Equation Arrays ... 22
3.20 Math Zones ... 22
3.21 Equation Numbers .. 23
3.22 UnicodeMath Characters and Operands .. 23
3.23 Equation Breaking and Alignment ... 26
3.24 Size Overrides .. 26

4. Input Methods .. 27
4.1 Character Translations ... 27
4.2 Math Keyboards .. 29
4.3 Hexadecimal Input .. 29
4.4 Pull-Down Menus, Ribbons, Context Menus ... 29
4.5 Macros .. 30
4.6 UnicodeMath Autocorrect List ... 30

 Unicode Nearly Plain Text Encoding of Mathematics

2 Unicode Technical Note 28

4.7 Handwritten Input .. 31
4.8 Speech Input .. 31
4.9 Braille ... 31

5. Recognizing Mathematical Expressions ... 31
6. Using UnicodeMath in Programming Languages ... 33

6.1 Advantages of UnicodeMath in Programs ... 33
6.2 Comparison of Programming Notations ... 34
6.3 Export to TeX ... 37

7. Conclusions ... 37
Acknowledgements ... 38
Appendix A. UnicodeMath Grammar ... 38
Appendix B. Character Keywords and Properties .. 40
Version Differences ... 49
References .. 49

1. Introduction
With a few conventions, Unicode can encode most mathematical expressions in

a readable nearly plain text called UnicodeMath. The format is linear, but it can be con-
verted to a built-up format that Microsoft Office applications like Word refer to as
“Professional”. UnicodeMath is more compact and easier to read than [La]TeX,3,4 or
MathML.5 Unlike those formats, it delegates some rich-text properties like text and
background colors, font size, footnotes, comments, hyperlinks, etc., to a higher layer.
Although one could extend the notation to include such properties, readability would
be reduced. Hence in a rich-text environment, UnicodeMath faithfully represents rich
mathematical text, while in a plain-text environment it lacks most rich-text properties
and some mathematical typographical properties. UnicodeMath is primarily con-
cerned with presentation, but it has some semantic features that might seem to be
only content oriented, e.g., n-aryands and function-apply arguments (see Secs. 3.4 and
3.5). These aid in displaying built-up functions with proper typography and they also
help to interoperate with math-oriented programs and math speech.

A variety of syntax choices can be used for a linear format. The choices made for
UnicodeMath favor a number of criteria: efficient input of mathematical formulae, suf-
ficient generality to support high-quality mathematical typography, the ability to
round trip elegant mathematical text at least in a rich-text environment, and a format
that resembles real mathematical notation.

UnicodeMath is useful for 1) inputting mathematical expressions,6 2) displaying
mathematics by text engines that cannot display a built-up format, and 3) computer
programs. In addition to being the most readable linear format, UnicodeMath is the
most concise. It represents the simple fraction, one half, by the 3 characters “1/2”,
whereas typical MathML takes 62 characters (consisting of the <mml:mfrac> entity).
This conciseness makes UnicodeMath an attractive format for storing mathematical
expressions and equations, as well as for ease of keyboard entry. Another comparison

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 3

is in the math structures for the Equation Tools tab in the Microsoft Office math rib-
bon. In Word, the structures are defined in OMML (Office MathML) and built up by
Word, while for the other apps, the structures are defined in UnicodeMath and built
up by RichEdit. The latter are much faster and the equation data much smaller. A dra-
matic example is the stacked fraction template (empty numerator over empty denom-
inator). In UnicodeMath, this is given by the single character ‘/’. In OMML, it’s 109
characters! LaTeX is considerably shorter at 9 characters “\frac{}{}”, but is still 9
times longer than UnicodeMath. AsciiMath represents fractions the same way as
UnicodeMath, so simple cases are identical. If Greek letters or other characters that
require names in AsciiMath are used, UnicodeMath is shorter and more readable.

Another advantage of UnicodeMath over MathML and OMML is that Unicode-
Math can be stored anywhere Unicode text is stored. When adding math capabilities
to a program, XML formats require redefining the program’s file format and poten-
tially destabilizing backward compatibility, while UnicodeMath does not. If a program
is aware of UnicodeMath math zones (see Section 3.20), it can recover the built-up
mathematics by passing those zones through the RichEdit UnicodeMath MathBuildUp
function. In fact, you can roundtrip RichEdit documents containing math zones
through the plain-text editor Notepad and the math zones are preserved.

For interchange of math expressions between arbitrary math-aware programs,
MathML and other higher-level languages are preferred. At the present time, conver-
sion between UnicodeMath and other math formats is only implemented in Microsoft
applications, although UnicodeMath isn’t proprietary.

Section 2 motivates and illustrates UnicodeMath using the fraction, subscripts,
and superscripts along with a discussion of how the ASCII space U+0020 is used to
build up one construct at a time. Section 3 summarizes the usage of the other con-
structs along with their relative precedences, which are used to simplify the notation.
Section 4 discusses input methods. Section 5 gives ways to recognize mathematical
expressions embedded in ordinary text. Section 6 explains how Unicode plain text can
be helpful in programming languages. Section 7 gives conclusions. The appendices
present a simplified UnicodeMath grammar and a partial list of operators.

2. Encoding Simple Math Expressions
Given Unicode’s strong support for mathematics2 relative to ASCII, how much

better can a plain-text encoding of mathematical expressions look using Unicode? The
most well-known ASCII encoding of such expressions is that of TeX, so we use it for
comparison. MathML is more verbose than TeX and some of the comparisons apply to
it as well. Notwithstanding TeX’s phenomenal success in the science and engineering
communities, a casual glance at its representations of mathematical expressions re-
veals that they do not look very much like the expressions they represent. It’s not easy
to make algebraic calculations by hand using TeX’s notation. With UnicodeMath, one
can represent mathematical expressions more readably, and the results can often be

http://asciimath.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/hh780445(v=vs.85).aspx

 Unicode Nearly Plain Text Encoding of Mathematics

4 Unicode Technical Note 28

used with few or no modifications for such calculations. This capability is considera-
bly enhanced by using UnicodeMath in a system that can also display and edit the
mathematics in built-up form, such as Microsoft Office applications.

The present section introduces UnicodeMath with fractions, subscripts, and su-
perscripts. It concludes with a subsection on how the ASCII space character U+0020
can be used to build up one construct at a time. This is a key idea that helps make
UnicodeMath ideal for inputting mathematical formulae. In general where syntax and
semantic choices were made, input convenience was given higher priority.

2.1 Fractions
One way to specify a fraction linearly is LaTeX’s \frac{numerator}{denominator}.

The { } are not printed when the fraction is built up. These simple rules immediately
give a “plain text” that is unambiguous, but looks quite different from the correspond-
ing mathematical notation, thereby making it harder to read.

Instead we define a simple operand to consist of all consecutive letters and dec-
imal digits, i.e., a span of alphanumeric characters, those belonging to the Lx and Nd
General Categories (see The Unicode Standard,1 Table 4-2. General Category). As such,
a simple numerator or denominator is terminated by most nonalphanumeric charac-
ters, including, for example, arithmetic operators, the blank (U+0020), and Unicode
characters in the ranges U+2200..U+23FF, U+2500..U+27FF, and U+2900.. U+2AFF.
The fraction operator is given by the usual solidus / (U+002F). So the simple built-up
fraction

𝑎𝑏𝑐
𝑑

appears in UnicodeMath as abc/d. To force a display of a normal-size linear fraction,
one can use \/ (backslash followed by slash).

For more complicated operands (such as those that include operators), paren-
theses (), brackets [], or braces { } can be used to enclose the desired character com-
binations. If parentheses are used and the outermost parentheses are preceded and
followed by operators, those parentheses are not displayed in built-up form, since
usually one does not want to see such parentheses. So the plain text (a + c)/d displays
as

𝑎 + 𝑐
𝑑 .

In practice, this approach leads to plain text that is easier to read than LaTeX’s, e.g.,
\frac{a + c}{d}, since in many cases, parentheses are not needed, while TeX requires
{ }’s. To force the display of the outermost parentheses, one encloses them, in turn,
within parentheses, which then become the outermost parentheses. For example, ((a
+ c))/d displays as

(𝑎 + 𝑐)
𝑑 .

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 5

A really neat feature of this notation is that the plain text is, in fact, often a legit-
imate mathematical notation in its own right, so it is relatively easy to read. Contrast
this with the MathML version, which (with no parentheses) reads as

<mfrac>
 <mrow>

<mi>a</mi>
<mo>+</mo>
<mi>c</mi>

 </mrow>
 <mi>d</mi>
 </mfrac>

Three built-up fraction variations are available: the “fraction slash” U+2044
(which one might input by typing \sdiv) builds up to a skewed fraction, the “division
slash” U+2215 (\ldiv) builds up to a potentially large linear fraction, and the circled
slash ⊘ (U+2298, \ndiv) builds up a small numeric fraction (although characters
other than digits can be used as well). Three kinds of built-up fractions are illustrated
by

𝑎
𝑏 + 𝑐
𝑑
𝑒 + 𝑓

,
𝑎

𝑏 + 𝑐
𝑑
𝑒 + 𝑓
⁄ , (

𝑎
𝑏 + 𝑐

) (
𝑑
𝑒
+ 𝑓)⁄

When building up the large linear fraction, the outermost parentheses should not be
removed.

The same notational syntax is used for a “stack” which is like a fraction with no frac-
tion bar. The stack is used to create binomial coefficients and the stack operator is ‘¦’
(\atop). For example, the binomial theorem

(𝑎 + 𝑏)𝑛 = ∑(
𝑛
𝑘) 𝑎

𝑘𝑏𝑛−𝑘
𝑛

𝑘=0

in UnicodeMath reads as (see Sec. 3.4 for a discussion of the n-aryand “glue” opera-
tor ▒)

(a + b)^n = ∑_(k=0)^n▒(n¦k) a^k b^(n-k),

where (n ¦ k) is the binomial coefficient for the combinations of n items grouped k at
a time. The summation limits use the subscript/superscript notation discussed in the
next subsection.

Since binomial coefficients are quite common, TeX has the \choose control word
for them. In UnicodeMath Version 3, this uses the \choose operator ⒞ instead of the
\atop operator ¦. Accordingly the binomial coefficient in the binomial theorem above
can be written as “n\choose k”, assuming that you type a space after the k. This

 Unicode Nearly Plain Text Encoding of Mathematics

6 Unicode Technical Note 28

shortcut is included primarily for compatibility with TeX, since (n¦k) is pretty easy to
type.

When / is followed by an operator, it’s highly unlikely that a fraction is intended.
This fact leads to a simple way to enter negated operators like ≠, namely, just type /=
to get ≠. A list of such negated operator combinations is given in Section 4.1. To enter
≠, you can also type TeX’s name, \ne, but /= is slightly simpler. And the TeX names for
the other negated operators in Section 4.1 are harder to remember. One other trick
with fractions is that a period or comma in between two digits or in between the slash
and a digit is considered to be part of a number, rather than being a terminator. For
example 1/3.1416 builds up to 1

3.1416
, rather than 1

3
. 1416.

These fraction operators have left-to-right associativity as in common program-
ming languages like C/C++/C#. For example, 1+a/b/c/d builds up as

1 +

𝑎
𝑏
𝑐
𝑑

2.2 Subscripts and Superscripts
Subscripts and superscripts are a bit trickier, but they’re still quite readable. Spe-

cifically, we introduce a subscript by a subscript operator, which we display as the
ASCII underscore _ as in TeX. A simple subscript operand consists of the string of one
or more characters with the General Categories Lx (alphabetic) and Nd (decimal dig-
its), as well as the invisible comma. For example, a pair of subscripts, such as 𝛿𝜇𝜈 is
written as 𝛿_𝜇𝜈. Similarly, superscripts are introduced by a superscript operator,
which we display as the ASCII ^ as in TeX. So a^b means 𝑎𝑏 . A nice enhancement for a
text processing system with build-up capabilities is to display the _ as a small sub-
script down arrow and the ^ as a small superscript up arrow, in order to convey the
semantics of these build-up operators in a math context.

Compound subscripts and superscripts include expressions within parentheses,
square brackets, and curly braces. So 𝛿𝜇+𝜈 is written as 𝛿_(𝜇 + 𝜈) . In addition it is
worthwhile to treat two more operators, the comma and the period, in special ways.
Specifically, if a subscript operand is followed directly by a comma or a period that is,
in turn, followed by whitespace, then the comma or period appears on line, i.e., is
treated as the operator that terminates the subscript. However a comma or period
followed by an alphanumeric is treated as part of the subscript. This refinement obvi-
ates the need for many overriding parentheses, thereby yielding a more readable lin-
ear-format text (see Sec. 3.14 for more discussion of comma and period).

Another kind of compound subscript is a subscripted subscript, which works
using right-to-left associativity, e.g., a_b_c stands for 𝑎𝑏𝑐 . Similarly a^b^c stands for
𝑎𝑏𝑐 . Fortran’s ** exponentiation operator also has right-to-left associativity.

 Parentheses are needed for constructs such as a subscripted superscript like
𝑎𝑏𝑐 , which is given by a^(b_c), since a^b_c displays as 𝑎𝑐𝑏 (as does a_c^b). The build-
up program is responsible for figuring out what the subscript or superscript base is.

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 7

Typically the base is just a single math italic character like the a in these examples.
But it could be a bracketed expression or the name of a mathematical function like sin
as in sin^2 x, which renders as sin2 𝑥 (see Sec. 3.5 for more discussion of this case). It
can also be an operator, as in the examples +1 and =2. In Indic and other cluster-ori-
ented scripts the base is by default the cluster preceding the subscript or superscript
operator.

As an example of a slightly more complicated example, consider the expression
𝑊𝛿1𝜌1𝜎2
3𝛽 , which can be written in UnicodeMath as 𝑊^3𝛽_𝛿1𝜌1𝜎2, where Unicode nu-

meric subscripts are used. In TeX, one types

$W^{3\beta}_{\delta_1\rho_1\sigma_2}$

The TeX version looks simpler using Unicode for the symbols, namely $W^{3β}_{δ_1
ρ_1σ_2}$ or $W^{3β}_{δ1ρ1σ2}$, since Unicode has a full set of decimal subscripts and
superscripts. As a practical matter, numeric subscripts are typically entered using an
underscore and the number followed by a space or an operator, so the major simplifi-
cation is that fewer brackets are needed.

For the ratio
𝛼23

𝛽23 + 𝛾23

UnicodeMath can read as 𝛼₂³/(𝛽₂³ + 𝛾₂³), while the standard TeX version reads as
$$\alpha_2^3 \over \beta_2^3 + \gamma_2^3$$·

The UnicodeMath text is a legitimate mathematical expression, while the TeX version
bears no resemblance to a mathematical expression.
 TeX becomes cumbersome for longer equations such as

𝑊𝛿1𝜌1𝜎2
3𝛽 = 𝑈𝛿1𝜌1

3𝛽 +
1
8𝜋2 ∫ 𝑑𝛼2′ [

𝑈𝛿1𝜌1
2𝛽 − 𝛼2′𝑈𝜌1𝜎2

1𝛽

𝑈𝜌1𝜎2
0𝛽]

𝛼2

𝛼1

A UnicodeMath version of this reads as

W_δ1ρ1σ2^3β=U_δ1ρ1^3β+1/8π^2 ∫_α1^α2▒dα’2 [(U_δ1ρ1^2β-α’2
U_ρ1σ2^1β)/U_ρ1σ2^0β]

while the standard TeX version reads as

$$W_{\delta_1\rho_1\sigma_2}^{3\beta}
 = U_{\delta_1\rho_1}^{3\beta} + {1 \over 8\pi^2}
 \int_{\alpha_1}^{\alpha_2} d\alpha_2’ \left[
 {U_{\delta_1\rho_1}^{2\beta} - \alpha_2’
 U_{\rho_1\sigma_2}^{1\beta} \over
 U_{\rho_1\sigma_2}^{0\beta}} \right] $$.

 Unicode Nearly Plain Text Encoding of Mathematics

8 Unicode Technical Note 28

2.3 Use of the Blank (Space) Character
The ASCII space character U+0020 is rarely needed for explicit spacing of built-

up text since the spacing around operators should be provided automatically by the
math display engine (Sec. 3.16 discusses this automatic spacing). However the space
character is very useful for delimiting the operands of UnicodeMath. When the space
plays this role, it is eliminated upon build up. So if you type \alpha followed by a space
to get α, the space is eliminated when the α replaces the \alpha. Similarly a_1 b_2
builds up as a1b2 with no intervening space.

Another example is that a space following the denominator of a fraction is elim-
inated, since it causes the fraction to build up. If a space precedes the numerator of a
fraction, the space is eliminated since it may be necessary to delimit the start of the
numerator. Similarly if a space is used before a function-apply construct (see Sec. 3.5)
or before above/below scripts (see Sec. 3.3), it is eliminated since it delimits the start
of those constructs.

In a nested subscript/superscript expression, the space builds up one script at a
time. For example, to build up a^b^c to abc, two spaces are needed if spaces are used
for build up. Some other operator like + builds up the whole expression, since the op-
erands are unambiguously terminated by such operators.

In TeX, the space character is also used to delimit control words like \alpha and
does not appear in built-up form. A difference between UnicodeMath’s usage and
TeX’s is that in TeX, spaces are invariably eliminated in built-up display, whereas in
UnicodeMath blanks that don’t delimit operands or keywords do result in spacing.
Additional spacing characters are discussed in Sec. 3.16.

One displayed use for spaces is in overriding the algorithm that decides that an
ambiguous unary/binary operator like + or − is unary. If followed by a space, the op-
erator is considered to be binary and the space isn’t displayed. Spaces are also used
to obtain the correct spacing around comma, period, and colon in various contexts
(see Sec. 3.14).

3. Encoding Other Math Expressions
The previous section describes how UnicodeMath encodes fractions, subscripts and
superscripts and gives a feel for that format. The current section describes how other
mathematical constructs are encoded in UnicodeMath and ends with a more formal
discussion of the syntax.

3.1 Delimiters
Brackets [], braces { }, and parentheses () represent themselves in UnicodeMath,

and a word processing system capable of displaying built-up formulas should be able
to enlarge them to fit around what’s inside them. In general we refer to such charac-
ters as delimiters. A delimited pair need not consist of the same kinds of delimiters.
For example, it’s fine to open with [and close with } and one sees this usage in some

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 9

mathematical documents. The closing delimiter can have a subscript and/or a super-
script. Delimiters are called fences in MathML.

These choices suffice for most cases of interest. But to allow for use of a delimiter
without a matching delimiter and to overrule the open/close character of delimiters,
the special keywords \open and \close can be used. These translate to the box-draw-
ings characters├ and ┤, respectively. Box drawings characters are used for the
open/close delimiters because they aren’t likely to be used as mathematical charac-
ters and they are readily available in fonts. If used before any character that isn’t a
delimiter of the opposite sense, the open/close delimiter acts as an invisible delimiter,
defining the corresponding end of a delimited expression. A common use of this is the
“cases” equation, such as

|𝑥| = { 𝑥 if 𝑥 ≥ 0−𝑥 if 𝑥 < 0 ,

which has the UnicodeMath “|x| = {█ (&x" if "x ≥ 0@−&x" if "x < 0)┤” (see Sec. 3.19 for
a discussion of the equation-array operator █).

Because the cases construct is fairly common, TeX has the \cases control word
for it. This is implemented in UnicodeMath Version 3 with the \cases operator Ⓒ. With
this the equation above can be written as “|x| = Ⓒ(&x" if "x ≥ 0@−&x" if "x < 0)”, which
is still a little strange, but you don’t have to type the opening curly brace or the \close
character (┤).

The open/close delimiters can be used to overrule the normal open/close char-
acter of delimiters as in the admittedly strange, but nevertheless sometimes used, ex-
pression “]a + b[”, which has the UnicodeMath “├]a+b┤[”. Note that a blank following
an open or close delimiter is “eaten”. This is to allow an open delimiter to be followed
by a normal delimiter without interpreting the pair as a single delimiter. See also Sec.
3.18 on how to make arbitrary groupings. If a├ needs to be treated as an empty open
delimiter when it appears before a delimiter like | or], follow the├ by a space to force
the open-delimiter interpretation.

To suppress automatic sizing and to choose specific sizes,├ is followed by a digit
‘0’ –‘4’ with the meanings in the following table

Digit Meaning
0 Don’t grow
1 TeX \big
2 TeX \Big
3 TeX \bigg
4 TeX \Bigg

It’s rarely necessary to use explicit sizes if the display system can break equations
within bracketed expressions.

The usage of open and close delimiters in UnicodeMath is admittedly a compro-
mise between the explicit nature of TeX and the desire for a legitimate math notation,
but the flexibility can be worth the compromise especially when interoperating with

 Unicode Nearly Plain Text Encoding of Mathematics

10 Unicode Technical Note 28

ordinarily built-up text such as in a WYSIWYG math system. TeX uses \left and \right
for this purpose instead of \open and \close. We use the latter since they apply to
right-to-left mathematics used in many Arabic locales as well as to the usual left-to-
right mathematics.

Absolute values are represented by the ASCII vertical bar | (U+007C). The even-
ness of its count at any given bracket nesting level typically determines whether the
vertical bar is a close |. Specifically, the first appearance is considered to be an open |
(unless subscripted or superscripted), the next a close | (unless following an opera-
tor), the next an open |, and so forth.

Nested absolute values can be handled unambiguously by discarding the outer-
most parentheses within an absolute value. For example, the built-up expression ||x|
- |y|| can have the UnicodeMath |(|x|−|y|)|. Some cases, such as this one, can be parsed
without the clarifying parentheses by noting that a vertical bar | directly following an
operator is an open |. But the example |a|b−c|d| needs the clarifying parentheses since
it can be interpreted as either (|a|b)−(c|d|) or |a(|b−c|)d|. The usual algorithm gives
the former, so if one wants the latter without the inner parentheses, one can type
|(a|b−c|d)|.

Another case where we treat | as a close delimiter is if it is followed by a space
(U+0020). This handles the important case of the bra vector ⟨ | in Dirac notation. For
example, the quantum mechanical density operator ρ has the definition

𝜌 =∑𝑃𝜓|𝜓⟩⟨𝜓|
𝜓

,

where the vertical bars can be input using the ASCII vertical bar.
If a | is followed by a subscript and/or a superscript and has no corresponding

open |, it is treated as a script base character, i.e., not a delimiter. Its built-up size
should be the height of the integral sign in the current display/inline mode.

The Unicode norm delimiter U+2016 (‖ or \norm) has the same open/close def-
initions as the absolute value character | except that it’s always considered to be a
delimiter.

Delimiters can also have separators within them. UnicodeMath Version 2 doesn’t
formalize the comma separators of function arguments (MathML does), but it sup-
ports the vertical bar separator \vbar, which is represented by the box drawings light
vertical character│(U+2502). We tried using the ASCII | (U+007C) for this purpose
too, but the resulting ambiguities are insurmountable in general. One case using
U+007C as a separator that can be deciphered is that of the form (a|b), where a and b
are mathematical expressions. But (a|b|c) interprets the vertical bars as the absolute
value. And one might want to interpret the | in (a|b) as an open delimiter with) as the
corresponding close delimiter, while the (isn’t yet matched. If so, precede the | by├,
i.e., (├|b). The vertical bar separator grows in size to match the size of the surrounding
brackets. In Version 3, other operators can be treated as separators by preceding
them with \middle (║— U+2551).

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 11

Another common separator is the \mid character ∣ (U+2223), commonly used in
expressions like {𝑥 | 𝑓(𝑥) = 0}. This separator also grows in size to match the sur-
rounding brackets and is spaced as a relational operator.

3.2 Literal Operators
Certain operators like brackets, braces, parentheses, superscript, subscript, in-

tegral, etc., have special meaning in UnicodeMath. In fact, even a character like ‘+’,
which displays the same glyph in UnicodeMath as in built-up form (aside from a pos-
sible size reduction), plays a role in UnicodeMath in that it terminates an operand. To
remove the UnicodeMath role of such an operator, we precede it by the “literal opera-
tor”, for which the backslash \ is handy. So \[is displayed as an ordinary left square
bracket, with no attempt by the build-up software to match a corresponding right
square bracket. Such quoted operators are automatically included in the current op-
erand.

UnicodeMath operators always consist of a single Unicode character, although a
control word like \open may be used to input the character. Using a single character
has the advantage of being globalized, while default control words typically look like
English. Users can define other control words that look like words in other languages
just so long as they map into the appropriate operator characters. A slight exception
to the single-character operator rule occurs for accent operators (see Sec. 3.10). For
these the accent combining mark may be preceded by a no-break space for the sake
of readability. Another advantage of using operator characters rather than control
words is that the build-up processing is simplified and therefore faster. And it’s de-
lightful that the operator characters look like the operators they represent, while con-
trol words do not.

3.3 Prescripts and Above/Below Scripts
A special parenthesized syntax is used to form prescripts, that is, subscripts and

superscripts that precede their base. For this (_c^b)a creates the prescripted variable
𝑎𝑐𝑏 . Variables can have both prescripts and postscripts (ordinary subscripts and su-

perscripts).
In UnicodeMath Version 3, you can use a prescript notation similar to TeX’s. Just

type a subscript and/or a superscript not preceded by a base and then follow it with
a character that can be used as a base. For the c

b a example, you type _c^b a. Note that
you need to terminate the superscript with a space. If a variable precedes the pre-
script, you also need to precede the prescript with a space. A common use of pre-
scripts is for the confluent hypergeometric functions, such as 𝐹1 1. In Version 3, this
can be input as _1 F_1 or as (_1^)F_1.

Below scripts and above scripts are represented in general by the line drawing
operators \below (┬) and \above (┴), respectively. Hence the expression lim

𝑛→∞
𝑎𝑛 can

be represented by lim┬ (n→∞) a_n. Since the operations det, gcd, inf, lim, lim inf, lim
sup, max, min, Pr, and sup are common, their below scripts are also accessible by the

 Unicode Nearly Plain Text Encoding of Mathematics

12 Unicode Technical Note 28

usual subscript operator _. So in display mode, lim
𝑛→∞

𝑎𝑛 can also be represented by
lim_(n→∞) a_n, which is a little easier to type than lim┬ (n→∞) a_n.

Although for illustration purposes, the belowscript examples are shown here in-
line with the script below, ordinarily this choice is only for display-mode math. When
inline, below- and abovescripts entered with _ and ^ are shown as subscripts and su-
perscripts, respectively, as are the limits for n-ary operators. When entered with ┬
and ┴, they remain below and above scripts in-line. If an above/below operator or a
subscript/superscript operator is preceded by an operator, that operator becomes
the base. See Sec. 3.8 for some examples.

3.4 n-ary Operators
n-ary operators like integral, summation and product are sub/superscripted or

above/below operators that have a third argument: the “n-aryand”. For the integral,
the n-aryand is the integrand, and for the summation, it’s the summand. For both ty-
pographical and semantic purposes, it’s useful to identify these n-aryands. This is
done by following the sub/superscripted n-ary operator by the naryand concatena-
tion operator \naryand (▒) which is U+2592. The operand that follows this operator
becomes the n-aryand. For example, the expression ∫_0^a▒xⅆx/(x^2+a^2) has the
built up form

∫
𝑥 𝑑𝑥
𝑥2 + 𝑎2

𝑎

0

where xⅆx/(x^2+a^2) is the integrand and ⅆ is the Unicode differential d character
U+2146. Unlike with the fraction numerator and denominator, the outermost paren-
theses of a n-aryand are not removed on buildup, since parentheses are commonly
used to delimit compound n-aryands. Notice that the ⅆ character automatically intro-
duces a small space between the 𝑥 and the 𝑑𝑥 and by default displays as a math-italic
𝑑 when it appears in a math zone.

To delimit more complicated n-aryands without using parentheses or brackets
of some kind, use the \begin \end (〖〗see Sec. 3.18) delimiters, which disappear on
build up.

Since \naryand isn’t the most intuitive name, the alias \of can be used. This also
works as an alias for \funcapply in math function contexts (see Sec. 3.5). This alias is
motivated by sentences like “The integral from 0 to b of x dx is one-half b squared.”

Sometimes one wants to control the positions of the limit expressions explicitly
as in using TeX’s \limits (upper limit above, lower below) and \nolimits (upper limit
as superscript and lower as subscript) control words. To this end, if the n-ary opera-
tor is followed by the digit 1, the limit expressions are displayed above and below the
n-ary operator and if followed by the digit 2, they are displayed as superscript and
subscript. More completely, the number can be one of the first four of the following,
OR’d with any of the next three (which were added in Version 3), along with neither
or one of the last two

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 13

nLimitsDefault 0
nLimitsUnderOver 1
nLimitsSubSup 2
nUpperLimitAsSuperScript 3
nLimitsOpposite 4
nShowLowLimitPlaceHolder 8
nShowUpLimitPlaceHolder 16
fDontGrowWithContent 64
fGrowWithContent 128

3.5 Mathematical Functions
Mathematical functions such as trigonometric functions like “sin” should be rec-

ognized as such and not italicized. As such they are treated as ordinary text (see Sec.
3.16). In addition it’s desirable to follow them with the Invisible Function Apply op-
erator U+2061 (\funcapply). This is a special binary operator and the operand that
follows it is the function argument. In converting to built-up form, this operator trans-
forms its operands into a two-argument object that renders with the proper spacing
for mathematical functions.

If the Function Apply operator is immediately followed by a subscript or super-
script expression, that expression should be applied to the function name and the
Function Apply operator moved passed the modified name to bind the operand that
follows as the function argument. For example, the function sin2 x falls into this cate-
gory.

Unlike with the fraction numerator and denominator, the outermost parenthe-
ses of the second operand of the function-apply operator are not removed on buildup,
since parentheses are commonly used to delimit function arguments. To delimit a
more complicated arguments without using parentheses or brackets of some kind,
use the〖〗delimiters (\begin \end) which disappear on build up. If brackets are
used, they and their included content comprise the function’s argument. For example,
sin(𝑥) 𝑏 means sin(𝑥)×𝑏. To get sin(𝜔 − 𝜔0)𝑡, where 𝑡 is part of the argument, one
can use sin\funcapply(\omega-\omega_0)t, or enclose the argument in〖〗delimit-
ers.

Since \funcapply isn’t the most intuitive name, \of can be used in function-apply
contexts. \of autocorrects to ▒ (U+2592—\naryand, see Sec. 3.4), but context can give
it this convenient second use. This alias is motivated by sentences like “The sine of 2x
equals twice the sine of x times the cosine of x”, i.e., sin 2𝑥 = 2 sin 𝑥 cos 𝑥.

If a function name has a space in it, e.g., “lim sup”, the space is represented by a
no-break space (U+00A0) as described in Sec. 3.16. If an ordinary ASCII space were
used, it would imply build up of the “lim” function.

 Unicode Nearly Plain Text Encoding of Mathematics

14 Unicode Technical Note 28

3.6 Square Roots and Radicals
Square, cube, and quartic roots can be represented by expressions started by

the corresponding Unicode radical characters √ (U+221A, \sqrt), ∛ (U+221B, \cbrt),
and ∜ (U+221C, \qdrt). These operators include the operand that follows. Examples
are √abc, √(a+b) and ∛(c+d), which display as √𝑎𝑏𝑐, √𝑎 + 𝑏, and √𝑐 + 𝑑3 , respectively.
In general, the nth root radical is represented by an expression like √(n&a), where a
is the complete radicand. Anything following the closing parenthesis is not part of the
radicand. For example, √(𝑛&𝑎 + 𝑏) displays as √𝑎 + 𝑏𝑛 .

In UnicodeMath Version 3, you can obtain √𝑎 + 𝑏𝑛 using more TeX-like input
\root n\of(a+b). In this format, the degree of the radical can be more than one char-
acter without enclosing it in parentheses. For example, √𝑏 + 𝑐𝑛+1 can be input by
\root n+1\of(b+c), which is similar to TeX’s \root n+1\of{b+c}.

3.7 Enclosures
To enclose an expression in a rectangle one uses the rectangle operator ▭

(U+25AD, \rect) followed by the operand representing the expression. This syntax is
similar to that for the square root. For example ▭(𝐸 = 𝑚𝑐^2) displays as 𝐸 = 𝑚𝑐2 .
The same approach is used to put an overbar above an expression, namely follow the
overbar operator ¯ (U+00AF, \overbar) by the desired operand. For an underbar, use
the operator ▁ (U+2581, \underbar).

In general the rectangle function can represent any combination of borders, hor-
izontal, vertical, and diagonal strikeouts, and enclosure forms defined by the MathML
<menclose> element, except for roots, which are represented as discussed in the pre-
vious Section. The general syntax for enclosing an expression 𝑥 is ▭(𝑛&𝑥), where 𝑛
is a mask consisting of any combination of the following flags:

fBoxHideTop 1
fBoxHideBottom 2
fBoxHideLeft 4
fBoxHideRight 8
fBoxStrikeH 16
fBoxStrikeV 32
fBoxStrikeTLBR 64
fBoxStrikeBLTR 128

It is anticipated that the enclosure format number n is chosen via some kind of
friendly user interface, but at least the choice can be preserved in UnicodeMath. Note
that the overbar function can also be given by ▭(2&𝑥) and the underbar by ▭(8&𝑥).

Other enclosures such as rounded box ▢, circle, long division, actuarial, and el-
lipse ⬭ can be encoded as for the rectangle operator but using appropriate Unicode
characters (not all chosen here).

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 15

An abstract box can be put around an expression x to change alignment, spacing
category, size style, and other properties. This is defined by □(𝑛&𝑥), where □ is
U+25A1 (\box) and 𝑛 can be a combination of one Align option, one Space option, one
Size option and any flags in the following table:

nAlignBaseline 0
nAlignCenter 1
nSpaceDefault 0
nSpaceUnary 4
nSpaceBinary 8
nSpaceRelational 12
nSpaceSkip 16
nSpaceOrd 20
nSpaceDifferential 24
nSizeDefault 0
nSizeText 32
nSizeScript 64
nSizeScriptScript 96
fBreakable 128
fXPositioning 256
fXSpacing 512

3.8 Stretchy Characters
In addition to overbars and underbars, stretchable brackets are used in mathe-

matical text. For example, the “underbrace” and “overbrace” are as

𝑥 +⋯+ 𝑥⏞
𝑘 times

𝑥 + 𝑦 + 𝑧⏟
>0

The UnicodeMath for these are ⏞(x+⋯+x)^(k "times") and ⏟(x+y+z)_(>0), respec-
tively. Here the subscript and superscript operators are used for convenient keyboard
entry (and compatibility with TeX); one can also use Sec. 3.3’s belowscript and
abovescript operators, respectively. The horizontal stretchable brackets are given in
the following table

U+23DC ⏜ \overparen
U+23DD ⏝ \underpa-

ren
U+23DE ⏞ \overbrace
U+23DF ⏟ \underbrace
U+23E0 ⏠ \overshell

 Unicode Nearly Plain Text Encoding of Mathematics

16 Unicode Technical Note 28

U+23E1 \undershell
U+23B4 ⎴ \over-

bracket
U+23B5 ⎵ \under-

bracket

There are many other characters that can stretch horizontally to fit text, such as
various horizontal arrows. There are four configurations: a stretch character above
or below a baseline text, and text above or below a baseline stretched character. Il-
lustrating UnicodeMath for these four cases with the stretchy character → and the
text 𝑎 + 𝑏, we have

(𝑎 + 𝑏)┴ → 𝑎 + 𝑏

→

(𝑎 + 𝑏)┬ → 𝑎 + 𝑏→

→ ┴𝑎 + 𝑏
𝑎+𝑏
→

→ ┬(𝑎 + 𝑏)
𝑎+𝑏
→

3.9 Matrices
Matrices are represented by a notation very similar to TeX’s, namely an ex-

pression of the form

■ (exp1 [& exp2]… @ … expn-1 [& expn]…)

where ■ is the matrix character U+25A0 and @ is used to terminate rows, except for
the last row which is terminated by the closing paren. This causes exp1 to be aligned
over exp n-1, etc., to build up an n×m matrix array, where n is the maximum number of
elements in a row and m is the number of rows. The matrix is constructed with enough
columns to accommodate the row with the largest number of entries, with rows hav-
ing fewer entries given sufficient null entries to keep the table n×m. As an example,
■(𝑎&𝑏@𝑐&𝑑) displays as

𝑎 𝑏
𝑐 𝑑

If you want parentheses around the matrix, include them as in (■(𝑎&𝑏@𝑐&𝑑))
Because parenthesized matrices are quite common, TeX has the \pmatrix control
word that automatically includes parentheses. This is implemented in UnicodeMath
Version 3 with the \pmatrix operator ⒨. So ⒨(𝑎&𝑏@𝑐&𝑑) displays as

(𝑎 𝑏
𝑐 𝑑)

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 17

3.10 Accent Operators
Mathematics often has accented characters. Simple primed characters like 𝑎′

are represented by the character followed by the Unicode prime U+2032, which can
be typed in using the ASCII apostrophe '. Double primed characters have two Unicode
primes, etc. In addition, Unicode has multiple prime characters that render with
somewhat different spacing than concatenations of U+2032. The primes are special
in that they need to be superscripted with appropriate use of heavier glyph variants
(see Sec. 3.12). When it follows a variable, e.g., 𝑎′, it should be converted into a super-
script function with a as the base and the prime as the superscript. It’s also important
to merge the prime into a superscript that follows, e.g., 𝑎′^𝑐 should display as 𝑎′𝑐 ,
where both the prime and the c are in the same superscript argument.

The ASCII asterisk is raised in ordinary text, but in a math zone it gets translated
into U+2217, which is placed on the math axis as the +. To make it a superscript or
subscript, the user has to include it in a superscript or subscript expression. For ex-
ample, a*2 has the UnicodeMath a^*2 or a^(*2). Here for convenience, the asterisk is
treated as an operand character if it follows a subscript or superscript operator.

Other kinds of accented characters can be represented by Unicode combining
mark sequences. The combining marks are found in the Unicode ranges U+0300—
U+036F and U+20D0 – U+20FF. The most common math accents are summarized in
the following table

\hat U+0302 �̂�
\check U+030C �̌�
\tilde U+0303 �̃�
\acute U+0301 �́�
\grave U+0300 �̀�
\dot U+0307 �̇�
\ddot U+0308 �̈�
\dddot U+20DB 𝑎
\bar U+0304 �̅�
\vec U+20D7 �⃗�

If a combining mark should be applied to more than one character or to an ex-

pression, that character or expression should be enclosed in parentheses and fol-
lowed by the combining mark. Since this construct looks funny when rendered by
plain-text programs, a no-break space (U+00A0) can appear in between the paren-
theses and the combining mark. For example, (𝑎 + 𝑏) ̂ renders as 𝑎 + �̂� when built up.
Special cases of this notation include overscoring (use U+0305) and underscoring
(use U+0332) mathematical expressions.

The combining marks are treated by a mathematics renderer as operators that
translate into special accent built-up functions with the proper spacing for mathemat-
ical variables.

 Unicode Nearly Plain Text Encoding of Mathematics

18 Unicode Technical Note 28

3.11 Differential, Exponential, and Imaginary Symbols
Unicode contains a number of special double-struck math italic symbols that are

useful for both typographical and semantic purposes. These are U+2145—U+2149
for double-struck D, d, e, i, and j (ⅅ, ⅆ, ⅇ, ⅈ, ⅉ), respectively. They have the meanings
of differential, differential, natural exponent, imaginary unit, and imaginary unit, re-
spectively. They can be typed in using \Dd, \dd, \ee, \ii, and \jj, respectively.

In US patent applications these characters should be rendered as ⅅ, ⅆ, ⅇ, ⅈ, ⅉ as
defined, but in regular US technical publications, these quantities can be rendered as
math italic. In European technical publications, they are sometimes rendered as up-
right characters. Furthermore the D and d start a differential expression and should
have appropriate spacing for differentials. UnicodeMath treats these symbols as op-
erand characters, but the display routines should provide the appropriate glyphs and
spacings. See Sec. 3.4 for an example of an integral using ⅆ.

3.12 Unicode Subscripts and Superscripts
Unicode contains a small set of mostly numeric superscripts (U+00B2, U+00B3,

U+00B9, U+2070—U+207F) and a similar set of subscripts (U+2080—U+208F) that
should be rendered the same way that scripts of the corresponding script nesting
level would be rendered. To perform this translation, these characters can be treated
as high-precedence operators, spans of which combine into the corresponding super-
scripts or subscripts when built up. Since numeric subscripts and superscripts are
very common in mathematics, it’s worthwhile building up Unicode subscripts and su-
perscripts as if they had been UnicodeMath subscripts and superscripts.

3.13 Concatenation Operators
All remaining operators are “concatenation operators” so named because they

are concatenated with their surrounding text in built-up form. In addition a concate-
nation operator has two effects: 1) it terminates whatever operand precedes it, and
2) it implies appropriate surrounding space as discussed in Sec. 3.16 along with the
mathematical spacing tables of the font. Since the spacing around operators is well-
defined in this way, the user rarely needs to add explicit space characters.

3.14 Comma, Period, and Colon
The comma, period, and colon have context sensitive spacing requirements

that can be represented in UnicodeMath.

Comma: when surrounded by ASCII digits render with ordinary text
spacing. Else treat as punctuation with or without an ASCII blank follow-
ing it. In either punctuation case the comma is displayed with a small
space following it. If two spaces follow, the comma is rendered as a clause
separator (a relatively large space follows the comma).

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 19

Period: when surrounded by ASCII digits render with ordinary text spac-
ing. Else treat as punctuation with or without an ASCII blank following it.
In either punctuation case the period is displayed with a small space fol-
lowing it. No clause separator option exists for the period. An extended
decimal-point heuristic useful in calculator scenarios allows one to omit
a leading 0, e.g., use numbers like .5. For this if the period is followed by
an ASCII digit and 1) is at the start of a math zone, 2) follows a built-up
math object start character or end-of-argument character, or 3) follows
any operator except for closers and punctuation, then the period should
be classified as a decimal point. With this algorithm, a/.3 displays as

𝑎
.3

Colon: <space> ‘:’ is displayed as Unicode RATIO U+2236 with relational
spacing. ‘:’ without a leading space is displayed as itself with punctuation
spacing.

3.15 Ordinary Text Inside Math Zones
Sometimes one wants ordinary text inside a function argument or in a math zone

as in the formula
rate = distance

time
.

For such cases, the alphabetic characters should not be converted to math alphabetic
characters and the typography should be that of ordinary text, not math text. To em-
bed such text inside functions or in general in a math zone, the text can be enclosed
inside ASCII double quotes. So in UnicodeMath the formula above reads as

"rate"="distance"/"time".
If you want to include a double quote inside such text, insert \". Another example is
sin 𝜃 = ½𝑒𝑖𝜃 + c.c. To get the “c.c.” as ordinary text, enclose it with ASCII double
quotes. Otherwise the c’s will be italicized and the periods will have some space after
them.

Alternatively ordinary text inside a math zone can be specified using a charac-
ter-format property. This property is exported to plain text started and ended with
the ASCII double quote. Note that no math object or math text can be nested inside an
ordinary text region. Instead if you paste a math object or text into an ordinary text
region, you split the region into two such regions with the math object and/or text in
between.

3.16 Space Characters
Unicode contains numerous space characters with various widths and proper-

ties. These characters can be useful in tweaking the spacing in mathematical expres-
sions. Unlike the ASCII space, which is removed when causing build up as discussed

 Unicode Nearly Plain Text Encoding of Mathematics

20 Unicode Technical Note 28

in Sec. 2.3, the other spaces are not removed on build up. Spaces of interest include
the no-break space (U+00A0) and the spaces U+2000—U+200B, 202F, 205F.

In mathematical typography, the widths of spaces are usually given in integer
multiples of an eighteenth of an em. The em space is given by U+2003. Various space
widths are defined in the following table, which includes the corresponding MathML
names having these widths by default

Space Unicode MathML name Autocor-

rect
0 em U+200B zero-width space \zwsp
1/18 em U+200A veryverythinmathspace \hairsp
2/18 em U+200A U+200A verythinmathspace
3/18 em U+2009 thinmathspace \thinsp
4/18 em U+205F mediummathspace \medsp
5/18 em U+2005 thickmathspace \thicksp
6/18 em U+2004 verythickmathspace \vthicksp
7/18 em U+2004 U+200A veryverythickmathspace
9/18 em U+2002 ensp \ensp
18/18 em U+2003 emsp \emsp
digit width U+2007 numsp \numsp
space width U+00A0 no-break space \nbsp

In general, spaces act as concatenation operators and cause build up of higher-

precedence operators that precede them. But it’s useful for the zero-width space
(U+200B) to be treated as an operand character and not to cause build up of the pre-
ceding operator. The no-break space (U+00A0) is used when two words need to be
separated by a blank, but remain on the same line together. The no-break space is also
treated as an operand character so that UnicodeMath combinations like “lim sup” and
“lim inf” can be recognized as single operands. If an ASCII space (U+0020) were used
after the “lim”, it would imply build up of the “lim” function, rather than being part of
the “lim sup” or “lim inf” function.

In math zones, most spacing is automatically implied by the properties of the
characters. The following table shows examples of how many 1/18ths of an em size
are automatically inserted between a character with the row property followed by a
character with the column property for text-level expressions (see also p. 170 of The
TeXbook and Appendix F of the MathML 2.0 specification)

 ord unary binary rel open close punct
ord 0 0 4 5 0 0 0
unary 0 0 4 0 0 0 0
binary 4 4 0 0 4 0 0
rel 5 5 0 0 5 0 0

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 21

open 0 0 0 0 0 0 0
close 0 0 4 5 0 0 0
punct 3 3 0 3 3 3 3

For the combinations described by this simple table, all script-level spacings are 0,
but a more complete table would have some nonzero values. For example, in the ex-
pression 𝑎 + 𝑏, the letters a and b have the ord (ordinary) property, while the + has
the binary property in this context. Accordingly for the text level there is 4/18th em
between the a and the + and between the + and the b. Similarly there is 5/18th em
between the = and the surrounding letters in the equation 𝑎 = 𝑏. A more complete
table could include properties like math functions (trigonometric functions, etc.), n-
ary operators, tall delimiters, differentials, subformulas (e.g., expression with an over
brace), binary with no spacing (e.g., /), clause separators, ellipsis, factorial, and invis-
ible function apply.

The zero-width space (U+200B, \zwsp) is handy for use as a null argument. For
example, the expression 𝒱𝑎𝑏 shows the subscript 𝑎𝑏 automatically kerned in under
the overhang of the 𝒱. To prevent this kerning, one can insert a \zwsp before the sub-
script, which then displays unkerned as 𝒱𝑎𝑏 .

3.17 Phantoms and Smashes
Sometimes one wants to obtain horizontal and/or vertical spacings that differ

from the normal values. In [La]TeX this can be accomplished using phantoms to in-
troduce extra space or smashes to zero out space. In UnicodeMath, seven special cases
are defined as in the following table

Autocor-
rect

LF op Op name width as-
cent

de-
scent

ink

\phantom ⟡ U+27E1 white concave-sided dia-
mond

w a d no

\hphantom ⬄ U+2B04 white left-right arrow w 0 0 no
\vphantom ⇳ U+21F3 white up-down arrow 0 a d no
\smash ⬍ U+2B0D black up-down arrow w 0 0 yes
\asmash ⬆ U+2B06 black up arrow w 0 d yes
\dsmash ⬇ U+2B07 black down arrow w a 0 yes
\hsmash ⬌

U+2B0C
black left-right arrow 0 a d yes

The general case is given by \phantom(n&<operand>), where n is any combination
of the following flags:

fPhantomShow 1
fPhantomZeroWidth 2
fPhantomZeroAscent 4
fPhantomZeroDescent 8
fPhantomTransparent 16

 Unicode Nearly Plain Text Encoding of Mathematics

22 Unicode Technical Note 28

For example, in the following equation the 𝜋 in the upper limit is inside an \hsmash
phantom, so that it has no width and thereby pulls the integrand in toward the inte-
gral sign

1
2𝜋∫

𝑑𝜃
𝑎 + 𝑏 sin 𝜃

2𝜋

0
=

1
√𝑎2 − 𝑏2

3.18 Arbitrary Groupings
The left/right white lenticular brackets〖 and 〗(U+3016 and U+3017) can be

used to delimit an arbitrary expression without displaying these brackets on build up.
The elimination of outermost parentheses for arguments of fractions, subscripts, and
superscripts solves such grouping problems nicely in most cases, but the white len-
ticular brackets can handle any remaining cases. Note that in math zones, these brack-
ets should be displayed using a math font rather than an East Asian font.

3.19 Equation Arrays
To align one equation relative to another vertically, one can use an equation ar-

ray, such as
10𝑥 + 3𝑦 = 2
3𝑥 + 13𝑦 = 4

which has the UnicodeMath █(10&x+&3&y=2@3&x+&13&y=4), where █ is U+2588.
Here the meaning of the ampersands alternate between align and spacer, with an im-
plied spacer at the start of the line. So every odd & is an alignment point and every
even & is a place where space may be added to align the equations. This convention
is used in AmSTeX.

3.20 Math Zones
Section 5 discusses heuristic methods to identify the start and end of math zones

in plain text. While the approaches given are surprisingly successful, they are not in-
fallible. Hence if one knows the start and end of math zones, it’s desirable to preserve
this information in UnicodeMath.

In plain text, UnicodeMath uses ⁅ (U+2045) to start a math zone and ⁆ (U+2046)
to end it. These characters are not ordinarily used in technical documents, so they
would rarely need to be quoted (preceded by a backslash). When importing plain text,
the user can execute a command to build up math zones defined by these math-zone
delimiters.

The delimiters are analogous to TeX’s $...$ (inline math zones) and $$...$$ (dis-
play math zones). UnicodeMath has the convention that if a math zone fills a (hard or
soft) paragraph, the math zone is a display math zone. If any part of the paragraph
isn’t in a math zone including a possible terminating period or comma, then the math
zone is an inline math zone, which has more compact rendering. Adjacent math zones
are automatically merged into a single math zone. Accordingly, UnicodeMath only

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 23

needs one set of math zone delimiters. LaTeX display math zones can have the form
\[…\] and LaTeX inline math zones can have the form \(…\).

3.21 Equation Numbers
Equation numbers are often used with equations presented in display mode. To

represent an equation number flushed right of the equation in UnicodeMath, enter
the equation followed by a # (U+0023) followed by the desired equation number text.
For example █(E=mc^2#(30)) or more simply just E=mc^2#(30) renders as

 𝐸 = 𝑚𝑐2 (30)

3.22 UnicodeMath Characters and Operands
UnicodeMath divides the roughly 128,000 assigned Unicode characters into

three categories: 1) operand characters such as alphanumerics, 2) the bracket char-
acters described in Sec. 3.1, and 3) other operator characters such as those described
in Secs. 2.1—2.2 and 3.2—3.19. Operand characters include some nonalphanumeric
characters, such as infinity (∞), exclamation point (!) if preceded by an operand,
Unicode minus (U+2212) or plus if either starts a sub/superscript operand, and pe-
riod and comma if they’re surrounded by ASCII (or full-width ASCII) digits (Sec. 3.14
gives a generalization of this last case). In other contexts, period and comma are
treated as operators with the same precedence as plus. To reveal which characters
are operators, operator-aware editors could be instructed to display operators with a
different color or some other attribute.

In addition, operands include bracketed expressions and mixtures of such ex-
pressions and other operand characters. Hence f(x) can be an operand. More specific
definitions of operands are given in the simplified UnicodeMath syntax of Appendix
A.

Operands in subscripts, superscripts, fractions, roots, boxes, etc. are defined in
part in terms of operators and operator precedence. While such notions are very fa-
miliar to mathematically oriented people, some of the symbols that we define as op-
erators might surprise one at first. Most notably, the space (U+0020) is an important
operator in UnicodeMath since it can be used to terminate operands as discussed in
Sec. 2-3. A small but common list of operators is given in Table 3.1

Table 3.1 List of the most common operators ordered by increasing precedence

CR
([{ |├〖
)] } | ┤〗

&│
Space “ . , = − + * × · • x

 ▒

 Unicode Nearly Plain Text Encoding of Mathematics

24 Unicode Technical Note 28

/ ¦
∫ ∑∏

_ ^
□ ▭ � √∛ ∜ ▁ ¯
Combining marks

where CR = U+000D. Note that the ASCII vertical bar | (U+007C) shows up both as an
opening bracket and as a closing bracket. The choice is disambiguated by the evenness
of its count at any given bracket nesting level or other considerations (see Sec. 3.1).
So typically the first appearance is considered to be an open |, the next a close |, the
next an open |, and so forth. The vertical bar appearing on the same level as & is con-
sidered to be a vertical bar separator and is given by the box drawings light vertical
character (U+2502). We tried using the ASCII U+007C for this too, but the resulting
ambiguities were insurmountable except in simple cases like (a|b) (see Section 3.1).

As in arithmetic, operators have precedence, which streamlines the interpreta-
tion of operands. The operators are grouped above in order of increasing precedence,
with equal precedence values on the same line. For example, in arithmetic, 3+1/2 =
3.5, not 2. Similarly the UnicodeMath expression α + β/γ means

𝛼 +
𝛽
𝛾 not

𝛼 + 𝛽
𝛾

Precedence can be overruled using parentheses, so (α + β)/γ gives the latter.
The following gives a list of the syntax for a variety of mathematical constructs

(see Appendix A for a more complete grammar).

exp1/exp2 Create a built-up fraction with numerator exp1 and denomina-

tor exp2. Numerator and denominator expressions are termi-
nated by operators such as /*]) and blank (can be overruled
by enclosing in parentheses).

exp1¦exp2 Similar to fraction, but no fraction bar is displayed. Some-
times called a stack.

base^exp1 Superscript expression exp1 to the base base. The super-
scripts 0 – 9 + - () exist as Unicode symbols. Sub/superscript ex-
pressions are terminated, for example, by /*]) and blank.
Sub/superscript operators associate right to left.

base_exp1 Subscript expression exp1 to the base base. The subscripts 0 – 9

+ - () exist as Unicode symbols.

base_exp1^exp2 Subscript expression exp1 and superscript expression exp2 to
the base base. The subscripts 0 – 9 + - () exist as Unicode sym-
bols.

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 25

 (_exp1^exp2)base Prescript the subscript exp1 and superscript exp2 to the base
base.

 base┴exp1 Display expression exp1 centered above the base base.
Above/below script operators associate right to left.

base┬exp1 Display expression exp1 centered below the base base.

[exp1] Surround exp1 with built-up brackets. Similarly for { } and ().
Similarly for { }, (), | |. See Sec. 3.1 for generalizations.

 [exp1]^exp2 Surround exp1 with built-up brackets followed by super-
scripted exp2 (moved up high enough).

□exp1 Abstract box around exp1.

▭exp1 Rectangle around exp1.

▁exp1 Underbar under exp1 (underbar operator is U+2581, not the
ASCII underline character U+005F).

¯ exp1 Overbar above exp1.

√exp1 Square root of exp1.

∛exp1 Cube root of exp1.

∜exp1 Fourth root of exp1.

√ (exp1&exp2) exp1th root of exp2.

∑_exp1^exp2▒exp3 Summation from exp1 to exp2 with summand exp3. _exp1 and
^exp2 are optional.

∏_exp1^exp2▒exp3 Product from exp1 to exp2 with multiplicand exp3. _exp1 and
^exp2 are optional.

∫_exp1^exp2▒exp3 Integral from exp1 to exp2 with integrand exp3. _exp1 and ^exp2
are optional.

(exp1 [& exp2]… [@ Align exp1 over exp n-1, etc., to build up an array (see Appendix

 … A for a more complete syntax).

 expn-1 [& expn]…])

Note that Unicode’s plethora of mathematical operators2 fill out the capabilities of the
approach in representing mathematical expressions in UnicodeMath.

Precedence simplifies the text representing formulas, but may need to be over-
ruled. To terminate an operand (shown above as, for example, exp1) that would oth-
erwise combine with the following operand, insert a blank (U+0020). This blank does
not show up when the expression is built up. Blanks that don’t terminate operands
may be used to space formulas in addition to the built-in spacing provided by a math
display engine. Blanks are discussed in greater detail in Sec. 2-3.

 Unicode Nearly Plain Text Encoding of Mathematics

26 Unicode Technical Note 28

To form a compound operand, parentheses can be used as described for the frac-
tion above. For such operands, the outermost parentheses are removed. These oper-
ands occur for fraction numerators and denominators, subscript and superscript ex-
pressions, and arguments of functions like square root. Parentheses appearing in
other contexts are always displayed in built-up format.

A curious aspect of the notation is that implied multiplication by juxtaposing two
variable letters has very high precedence (just below that of diacritics), while explicit
multiplication by asterisk and raised dot has a precedence equal to that of plus. So
even though the analysis is similar to that for arithmetic expressions, it differs occa-
sionally from the latter.

3.23 Equation Breaking and Alignment
UnicodeMath Version 3 has two features aiding equation breaking and align-

ment in display math zones. A soft (optional) line break is created by the invisible
times (U+2062), which is a binary operator and you can break on it and align to it. It
shouldn’t display a glyph, except for a thin space if at the end of a math zone. With it
you can effectively break an equation before any character, not just on binary, rela-
tional and some other operators. Generally it’s nice to display a multiplication times
symbol × if it ends up being the best point for an automatic break. This is analogous
to the way the soft hyphen (U+00AD) is used in ordinary text.

Interequation alignment can be accomplished by inserting &’s in front of the op-
erators, one per equation and not inside math objects, to be aligned at the same hori-
zontal position. For example, the lines

a&=b+c
x+y&=3

build up as
𝑎 = 𝑏 + 𝑐

𝑥 + 𝑦 = 3

See also Sec. 3.19 on the equation array for similar functionality.

3.24 Size Overrides
UnicodeMath Version 3 has a command to override the default character sizing. The
inverted F character Ⅎ (U+2132) followed by various ASCII characters changes the
“font” of the text. For example, a_ℲA2 builds up as 𝑎2 in contrast to a_2, which builds
up as 𝑎2. The subscript 2 is larger than normal in the former. Some of the Ⅎ codes are
defined in the table

ℲA One size larger
ℲB Two sizes larger
ℲC One size smaller
ℲD Two sizes smaller

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 27

These values are handy for roundtripping increase/decrease argument size context-
menu options.

4. Input Methods
In view of the large number of characters used in mathematics, it is useful to give

some discussion of input methods. The ASCII math symbols are easy to find, e.g., + - /
* [] () { }, but often need to be used as themselves. To handle these cases and to pro-
vide convenient entry of many other symbols, one can use an escape character, the
backslash (\), followed by the desired operator or its autocorrect name. Note that a
particularly valuable use of UnicodeMath is for inputting formulas into technical doc-
uments or programs. In contrast, the direct input of tagged formats like MathML is
very cumbersome if attempted by hand.

4.1 Character Translations
From syntax and typographical points of view, the Unicode minus sign (U+2212)

is displayed instead of the ASCII hyphen-minus (U+002D) and the prime (U+2032) is
used instead of the ASCII apostrophe (U+0027), but in math zones the minus sign and
prime can be entered using these ASCII counterparts. Note that for proper typography,
the prime should have a large glyph variant that when superscripted looks correct.
The primes in most fonts are chosen to look approximately like a superscript, but they
don’t provide the desired size and placement to merge well with other superscripts.

Similarly it is easier to type ASCII letters than italic letters, but when used as
mathematical variables, such letters are traditionally italicized in print. Accordingly a
user might want to make italic the default alphabet in a math context, reserving the
right to overrule this default when necessary. A more elegant approach in math zones
is to translate letters deemed to be standalone to the appropriate math alphabetic
characters (in the range U+1D400–U+1D7FF or in the Letterlike Block U+2100—
U+213F). Letter combinations corresponding to standard function names like “sin”
and “tan” should be represented by ASCII alphabetics. As such they are not italicized
and are rendered with normal typography, i.e., not mathematical typography. Other
post-entry enhancements include mappings like

!! ‼ U+203C
+- ± U+00B1
-+ ∓ U+2213
:: ∷ U+2237
:= ≔ U+2254
<= ≤ U+2264
>= ≥ U+2265
<< ≪ U+226A
>> ≫ U+226B
~= ≅ U+2245

 Unicode Nearly Plain Text Encoding of Mathematics

28 Unicode Technical Note 28

-> → U+2192

The pair <- shouldn’t map into ←, since expressions like x < −b are common. Also
it’s not a good idea to map != into ≠, since ! is often used in mathematics to mean
factorial.

In UnicodeMath Version 3, negated counterparts to common mathematical op-
erators can be entered by typing a / in front of the operator by. Operators with this
behavior include those in the following table

Operator Negated op Input
< ≮ /<
= ≠ /=
> ≯ />
∃ ∄ /\exists
∈ ∉ /\in
∋ ∌ /\ni
∼ ≁ /\sim
≃ ≄ /\simeq
≅ ≇ /\cong
≈ ≉ /\approx
≍ ≭ /\asymp
≡ ≢ /\equiv
≤ ≰ /\le
≥ ≱ /\ge
≶ ≸ /\lessgtr
≷ ≹ /\gtrless
≽ ⋡ /\succeq
≺ ⊀ /\prec
≻ ⊁ /\succ
≼ ⋠ /\preceq
⊂ ⊄ /\subset
⊃ ⊅ /\supset
⊆ ⊈ /\subseteq
⊇ ⊉ /\supseteq
⊑ ⋢ /\sqsubseteq
⊒ ⋣ /\sqsupseteq

All of these characters are in the U+22xx Unicode block (Mathematical Operators)
except for the ASCII characters <, =, and >.

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 29

If you don’t like an automatic translation when entering math, you can undo the
translation by typing, for example, Ctrl+z. Suffice it to say that intelligent input algo-
rithms can dramatically simplify the entry of mathematical symbols and expressions.

4.2 Math Keyboards
Computers have multilingual capabilities with keyboards for many different lan-

guages. It’s desirable to add math keyboards as well. A special math shift facility for
keyboard entry could bring up proper math symbols. The values chosen can be dis-
played on an on-screen keyboard. For example, the left Alt key could access the most
common mathematical characters and Greek letters, the right Alt key could access
italic characters plus a variety of arrows, and the right Ctrl key could access script
characters and other mathematical symbols. The numeric keypad offers locations for
a variety of symbols, such as sub/superscript digits using the left Alt key. Left Alt
CapsLock could lock into the left-Alt symbol set, etc. This approach yields what one
might call a “sticky” shift. Other possibilities involve the NumLock and ScrollLock keys
in combinations with the left/right Ctrl/Alt keys. Pretty soon one realizes that this
approach rapidly approaches literally billions of combinations, that is, several orders
of magnitude more than Unicode can handle!

4.3 Hexadecimal Input
A handy hex-to-Unicode entry method can be used to insert Unicode characters

in general and math characters in particular. Basically one types a character’s hexa-
decimal code (in ASCII), making corrections as need be, and then types Alt+x. The
hexadecimal code is replaced by the corresponding Unicode character. The Alt+x is a
toggle, that is, type it once to convert a hex code to a character and type it again to
convert the character back to a hex code. Toggling back to the hex code is very useful
for figuring out what a character is if the glyph itself doesn’t make it clear or for look-
ing up the character properties in the Unicode Standard. If the hex code is preceded
by one or more hexadecimal digits, select the desired code so that the preceding hex-
adecimal characters aren’t included in the code. The code can range up to the value
0x10FFFF, which is the highest character in the 17 planes of Unicode. This kind of
input is supported, for example, in Microsoft Word and in WordPad.

4.4 Pull-Down Menus, Ribbons, Context Menus
Pull-down menus and ribbons are popular methods for handling large character

sets, but they tend to be slower than keyboard approaches if you know the right keys
to type. A related approach is the symbol gallery, often used for emoji, which is an
array of symbols either chosen by the user or displaying the characters in a font. Mul-
tiple tabs can organize the symbol selections according to subject matter. On-screen
keyboards with symbol galleries are valuable for entry of mathematical expressions
and of Unicode text in general. Context menus (right-mouse menus) are quite useful
since they provide easy access to context-sensitive options, such as converting a
stacked fraction into a linear fraction.

 Unicode Nearly Plain Text Encoding of Mathematics

30 Unicode Technical Note 28

4.5 Macros
The autocorrect and keyboard macro features of some word processing systems

provide other ways of entering mathematical characters for people familiar with TeX.
For example, typing \alpha inserts 𝛼 if the appropriate autocorrect entry is present.
This approach is noticeably faster than using menus and is particularly attractive to
those with some familiarity with TeX. Similarly, one can assign a UnicodeMath expres-
sion to a control word. For example, typing \integral in a Microsoft Word math zone
inserts

1
2𝜋∫

𝑑𝜃
𝑎 + 𝑏 sin 𝜃

2𝜋

0
=

1
√𝑎2 − 𝑏2

4.6 UnicodeMath Autocorrect List
The UnicodeMath autocorrect list includes most of those defined in Appendix F

of The TeXbook, like \alpha for α, plus a number of others useful for inputting Unicode
Math. AsciiMath has a subset of such control words but omits the leading backslash.
The user can modify such control words in the Office math autocorrect list or add
them explicitly, but it’d probably be worth adding an option to make the leading back-
slash optional. That would speed up keyboard entry of UnicodeMath via math auto-
correct. The following table shows the default math autocorrect entries

Control word Character Control word Character
\int ∫ (U+222B) \oint ∮ (U+222E)
\sum ∑ (U+2211) \prod ∏ (U+220F)
\funcapply (U+2061) \naryand, \of ▒ (U+2592)
\rect ▭ (U+25AD) \sqrt √ (U+221A)
\open ├ (U+251C) \close ┤ (U+2524)
\above ┴ (U+2534) \below ┬ (U+252C)
\underbar ▁ (U+2581) \overbar ¯ (U+00AF)
\underbrace ︸(U+23DF) \overbrace ︷(U+23DE)

\begin 〖 (U+3016) \end 〗 (U+3017)
\phantom ⟡(U+27E1) \box □ (U+25A1)
\hphantom ⬄(U+2B04) \vphantom ⇳(U+21F3)
\asmash ⬆(U+2B06) \dsmash ⬇(U+2B07)
\hsmash ⬌(U+2B0C) \smash ⬍(U+2B0D)
\matrix ■ (U+25A0) \eqarray █ (U+2588)

Appendix B contains a default set of keywords containing both The TeXbook keywords
and the UnicodeMath keywords

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 31

Users can define their own control words for convenience or preference, such as
\a for α, which requires less typing than the official TeX control word \alpha. This also
allows localization of the control word list.

4.7 Handwritten Input
Particularly for touch screens, handwritten input is attractive provided the

handwriting recognizer is able to decipher the user’s handwriting. For this approach,
it’s desirable to bypass UnicodeMath altogether and recognize built-up mathematical
expressions directly.

4.8 Speech Input
You can say “a squared plus b squared equals c squared” faster than you can

write 𝑎2 + 𝑏2 = 𝑐2 or type it. UnicodeMath is nevertheless useful for math speech in-
put since speech text can be translated into UnicodeMath and then built up. Unicode-
Math is significantly closer to math speech than other math formats.

4.9 Braille
The 6-dot Nemeth braille encoding was created by Abraham Nemeth for math-

ematical and scientific notation. It’s general enough to encode almost all of Unicode-
Math. He started working on his encoding in 1946 and it was first published in 1952
by the American Printing House for the Blind. As such it’s the first math linear format.
It’s a little like UnicodeMath in that spaces play important roles and it’s a globalized
notation, so localization isn’t needed except for embedded natural language. Also
both formats strive to make simple things easy and concise at the cost of additional
syntax rules. But because a mere 64 codes are used to encode virtually all of math
notation plus a variety of other things, the semantics of the codes depend heavily on
their contexts. This level of complexity contrasts with UnicodeMath which has the
luxury of the exhaustive Unicode math symbol set. Accordingly, encoding math ex-
pressions can become quite tricky as revealed in the full specification. For a less
daunting intro, see this Nemeth Code Cheat Sheet. Nemeth recounts some history in
this 1991 interview.

5. Recognizing Mathematical Expressions
UnicodeMath expressions can be used “as is” for simple documentation pur-

poses. Use in more elegant documentation and in programming languages requires
knowledge of the underlying mathematical structure. This section describes some of
the heuristics that can distill the structure out of plain text.

Note that if explicit math-zone-on and math-zone-off characters are desired, Sec.
3.20 specifies that ⁅ (U+2045) starts a math zone and ⁆ (U+2046) ends it. These are
not ordinarily be used in technical documents. If they do need to be included in a math
zone, they can be preceded by the “quote” character \ as described in Sec. 3.2.

https://en.wikipedia.org/wiki/Nemeth_Braille
https://nfb.org/images/nfb/documents/pdf/nemeth_1972.pdf
http://accessinghigherground.org/handouts2013/HTCTU%20Alt%20Format%20Manuals/Math%20Accommodations/04a%20Nemeth%20Code%20Cheat%20Sheet.pdf
https://nfb.org/images/nfb/publications/fr/fr28/fr280110.htm

 Unicode Nearly Plain Text Encoding of Mathematics

32 Unicode Technical Note 28

Many mathematical expressions identify themselves as mathematical, obviating
the need to declare them explicitly as such. One well-known TeX problem is TeX’s
inability to detect expressions that are clearly mathematical, but that are not enclosed
within $’s. If one leaves out a $ by mistake, one gets many error messages because
TeX interprets subsequent text in the wrong mode. This problem is alleviated in La-
TeX, which has different math zone start and end delimiters.

An advantage of recognizing mathematical expressions without math-on and
math-off syntax is that it is much more tolerant to user errors of this sort. Resyncing
is automatic, while in TeX one basically has to start up again from the omission in
question. Furthermore, this approach could be useful in recognizing and converting
the mathematical literature that is not yet available in an object-oriented machine-
readable form, into that form.

It is possible to use a number of heuristics for identifying mathematical expres-
sions and treating them accordingly. These heuristics are not foolproof, but they lead
to the most popular choices. Special commands discussed at the end of this section
can be used to overrule these choices. Ultimately the approach could be used as an
autoformat style wizard that tags expressions with a rich-text math style whose state
is revealed to the user by a toolbar button. The user could then override cases that
were tagged incorrectly.

 The basic idea is that math characters identify themselves as such and poten-
tially identify their surrounding characters as math characters as well. For example,
the fraction ⁄ (U+2044) and ASCII slashes, symbols in the range U+2200 through
U+22FF, the symbol combining marks (U+20D0..U+20FF), the math alphanumerics
(see U+1D400..U+1D7FF, U+2100..U+214F), and in general, Unicode characters with
the mathematics property, identify the characters immediately surrounding them as
parts of math expressions.

If Latin letter mathematical variables are already given in one of the math alpha-
bets, they are considered parts of math expressions. If they are not, one can still have
some recognition heuristics as well as the opportunity to italicize appropriate varia-
bles. Specifically ASCII letter pairs surrounded by whitespace are often mathematical
expressions, and as such should be italicized in print. If a letter pair fails to appear in
a list of common English and European two-letter words, it is treated as a mathemat-
ical expression and italicized. Many Unicode characters are not mathematical in na-
ture and suggest that their neighbors are not parts of mathematical expressions.

Strings of characters containing no whitespace but containing one or more un-
ambiguous mathematical characters are generally treated as mathematical expres-
sions. Certain two-, three-, and four-letter words inside such expressions should not
be italicized. These include trigonometric function names like sin and cos, as well as
ln, cosh, etc. Words or abbreviations, often used as subscripts (see the program in Sec.
6), also should not be italicized, even when they clearly appear inside mathematical
expressions.

Special cases will always be needed, such as in documenting the syntax itself.
The literal operator introduced earlier (\) causes the operator that follows it to be

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 33

treated as an nonbuildup operator. This allows the printing of characters without
modification that by default are considered to be mathematical and thereby subject
to a changed display. Similarly, mathematical expressions that the algorithms treat as
ordinary text can be sandwiched between math-on and math-off symbols or by an
ordinary text attribute if they need to be embedded in the math zone, e.g., in the nu-
merator of a fraction.

6. Using UnicodeMath in Programming Languages
In the middle 1950’s, the authors of FORTRAN named their computer language

after FORmula TRANslation, but they only went part way. Arithmetic expressions in
Fortran and other current high-level languages still do not look like mathematical for-
mulas and considerable human coding effort is needed to translate formulas into their
machine comprehensible counterparts. For example, Fortran’s superscript construct
a**k isn’t as readable as ak and Fortran’s subscript a(k) isn’t as readable as ak. Ber-
trand Russell once said7 “a good notation has a subtlety and suggestiveness which at
times make it seem almost like a live teacher…and a perfect notation would be a sub-
stitute for thought.” From this point of view, popular modern computer languages are
badly lacking. At least Java allows many Unicode characters as variable names.

Using real mathematical expressions in computer programs would be far supe-
rior in terms of readability, reduced coding times, program maintenance, and stream-
lined documentation. In studying computers we have been taught that this ideal is
unattainable, and that one must be content with the arithmetic expression as it is or
some other non-mathematical notation such as TeX’s. It’s worth reexamining this
premise. Whereas true mathematical notation clearly used to be beyond the capabil-
ities of machine recognition, we’re getting a lot closer now.

In general, mathematics has a very wide variety of notations, none of which look
like the arithmetic expressions of programming languages. Although ultimately it
would be desirable to be able to teach computers how to understand all mathematical
expressions, we start with UnicodeMath.

6.1 Advantages of UnicodeMath in Programs
In raw form, these expressions look very like traditional mathematical expres-

sions. With use of the heuristics described above, they can be printed or displayed in
traditional built-up form. On disk, they can be stored in pure-ASCII program files ac-
cepted by standard compilers and symbolic manipulation programs like Maple, Math-
ematica, and Macsyma. The translation between Unicode symbols and the ASCII
names needed by ASCII-based compilers and symbolic manipulation programs can be
carried out via table-lookup (on writing to disk) and hashing (on reading from disk)
techniques.

Hence formulas can be at once printable in manuscripts and computable, either
numerically or analytically. Note that this is a goal of MathML as well, but attained in

 Unicode Nearly Plain Text Encoding of Mathematics

34 Unicode Technical Note 28

a relatively complex way using specialized tools. The idea here is that regular pro-
gramming languages can have expressions containing standard arithmetic operations
and special characters, such as Greek, italics, script, and various mathematical sym-
bols like the square root. Two levels of implementation are envisaged: scalar and vec-
tor. Scalar operations can be performed on traditional compilers such as those for C
and Fortran. The scalar multiply operator is represented by a raised dot, a legitimate
mathematical symbol, instead of the asterisk. To keep auxiliary code to a minimum,
the vector implementation requires an object-oriented language such as C++.

The advantages of using UnicodeMath are at least threefold:
1) many formulas in document files can be programmed simply by copying

them into a program file and inserting appropriate multiplication dots. This
dramatically reduces coding time and errors.

2) The use of the same notation in programs and the associated journal articles
and books leads to an unprecedented level of self documentation. In fact,
since many programmers document their programs poorly or not at all, this
enlightened choice of notation can immediately change nearly useless or
nonexistent documentation into excellent documentation.

3) In addition to providing useful tools for the present, these proposed initial
steps should help us figure out how to accomplish the ultimate goal of teach-
ing computers to understand and use arbitrary mathematical expressions.
Such machine comprehension would greatly facilitate future computations
as well as the conversion of the existing paper literature and hand written
input into machine usable form.

The concept is portable to any environment that supports Unicode, and it takes
advantage of the fact that high-level languages like C and Fortran accept an “escape”
character (“_” and “$”, respectively) that can be used to access extended symbol sets
in a fashion similar to TeX. In addition, the built-in C preprocessor allows niceties
such as aliasing the asterisk ith a raised dot, which is a legitimate mathematical sym-
bol for multiplication. The Java and C# languages allow direct use of Unicode variable
names, which is a major step in the right direction. Compatibility with unenlightened
ASCII-only compilers can be done via an ASCII representation of Unicode characters.

6.2 Comparison of Programming Notations
To get an idea as to the differences between the standard way of programming

mathematical formulas and the proposed way, compare the following versions of a
C++ routine entitled IHBMWM (inhomogeneously broadened multiwave mixing)

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 35

void IHBMWM(void)
{
 gammap = gamma*sqrt(1 + I2);
 upsilon = cmplx(gamma+gamma1, Delta);
 alphainc = alpha0*(1-(gamma*gamma*I2/gammap)/(gammap + upsilon));

 if (!gamma1 && fabs(Delta*T1) < 0.01)
 alphacoh = -half*alpha0*I2*pow(gamma/gammap, 3);
 else

{
 Gamma = 1/T1 + gamma1;
 I2sF = (I2/T1)/cmplx(Gamma, Delta);
 betap2 = upsilon*(upsilon + gamma*I2sF);
 beta = sqrt(betap2);
 alphacoh = 0.5*gamma*alpha0*(I2sF*(gamma + upsilon)
 /(gammap*gammap – betap2))
 ((1+gamma/beta)(beta – upsilon)/(beta + upsilon)
 - (1+gamma/gammap)*(gammap – upsilon)/
 (gammap + upsilon));
 }
 alpha1 = alphainc + alphacoh;
}

void IHBMWM(void)
{
 𝛾 = 𝛾 • √(1 + 𝐼2);
 𝜐 = 𝛾 + 𝛾1 + 𝑖 • Δ;
 𝛼_inc = 𝛼0 • (1 − (𝛾 • 𝛾 • 𝐼2/𝛾’)/(𝛾’ + 𝜐));
 if (! 𝛾1 || fabs(Δ • 𝑇1) < 0.01)

 𝛼_coh = −.5 • 𝛼0 • 𝐼2 • pow(𝛾/𝛾’, 3);
 else

{
 𝛤 = 1/𝑇1 + 𝛾1;
 𝐼2ℱ = (𝐼2/𝑇1)/(Γ + 𝑖 • Δ);

𝛽2 = 𝜐 • (𝜐 + 𝛾 • 𝐼2ℱ);
 𝛽 = √𝛽2;
 𝛼_coh = .5 • 𝛾 • 𝛼0 • (𝐼2ℱ(𝛾 + 𝜐)/(𝛾’ • 𝛾’ − 𝛽2))
 ×((1 + 𝛾/𝛽) • (𝛽 − 𝜐)/(𝛽 + 𝜐) − (1 + 𝛾/𝛾’) • (𝛾’ − 𝜐)/(𝛾’ + 𝜐));
 }
 𝛼1 = 𝛼_inc + 𝛼_coh;
}

 Unicode Nearly Plain Text Encoding of Mathematics

36 Unicode Technical Note 28

The above function runs fine with C++ compilers, but C++ does impose some serious
restrictions based on its limited operator table. For example, vectors can be multi-
plied together using dot, cross, and outer products, but there’s only one asterisk to
overload in C++. In built-up form, the function looks even more like mathematics,
namely

void IHBMWM(void)
{
 𝛾 = 𝛾 • √1 + 𝐼2;
 𝜐 = 𝛾 + 𝛾1 + 𝑖 • Δ;

𝛼inc = 𝛼0 • (1 −
𝛾 • 𝛾 • 𝐼2/𝛾’
𝛾’ + 𝜐) ;

 if (! 𝛾1|| fabs(Δ • 𝑇1) < 0.01)
 𝛼coh = −.5 • 𝛼0 • 𝐼2 • (𝛾/𝛾’)3;

 else
{

 Γ = 1/𝑇1 + 𝛾1;

𝐼2ℱ =
𝐼2/𝑇1
Γ + 𝑖 • Δ ;

𝛽2 = 𝜐 • (𝜐 + 𝛾 • 𝐼2ℱ);
 𝛽 = √𝛽2;

𝛼coh = .5 • 𝛾 • 𝛼0 •
𝐼2ℱ(𝛾 + 𝜐)
𝛾’ • 𝛾’ − 𝛽2 ((1 +

𝛾
𝛽) •

𝛽 − 𝜐
𝛽 + 𝜐 − (1 +

𝛾
𝛾′) •

𝛾’ − 𝜐
𝛾’ + 𝜐) ;

 }
 𝛼1 = 𝛼inc + 𝛼coh;
}

The ability to use the second and third versions of the function was built into the
PS Technical Word Processor8 circa 1988. With it we already came much closer to
true formula translation on input, and the output is displayed in standard mathemat-
ical notation. Lines of code could be previewed in built-up format, complete with frac-
tion bars, square roots, and large parentheses. To code a formula, one copies it from a
technical document, pastes it into a program file, inserts appropriate raised dots for
multiplication and compiles. No change of variable names is needed. Call that 70% of
true formula translation! In this way, the C++ function on the preceding page compiles
without modification. The code appears nearly the same as the formulas in print [see
Chaps. 5 and 8 of Meystre and Sargent9].

 Questions remain such as whether subscript expressions in UnicodeMath
should be treated as part of program-variable names, or whether they should be
translated to subscript expressions in the target programming language. Similarly, it
would be straightforward to automatically insert an asterisk (indicating multiplica-
tion) between adjacent symbols, rather than have the user do it. However here there

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 37

is a major difference between mathematics and computation: symbolically, multipli-
cation is infinitely precise and infinitely fast, while numerically, it takes time and is
restricted to a binary subset of the rationals with limited (although usually adequate)
precision. Consequently for the moment, at least, it seems wiser to consider adjacent
symbols as part of a single variable name, just as adjacent ASCII letters are part of a
variable name in current programming languages. Perhaps intelligent algorithms will
be developed that decide when multiplication should be performed and insert the as-
terisks optimally.

6.3 Export to TeX
Export to TeX is similar to export to programming languages, but has a modified

set of requirements. With current programs, comments are distilled out with distinct
syntax. This same syntax can be used in UnicodeMath, although it is interesting to
think about submitting a mathematical document to a preprocessor that can recog-
nize and separate out programs for a compiler. In this connection, compiler comment
syntax is not particularly pretty; ruled boxes around comments and vertical dividing
lines between code and comments are noticeably more readable. So some refinement
of the ways that comments are handled would be very desirable. For example, it would
be nice to have a vertical window-pane facility with synchronous window-pane scroll-
ing and the ability to display C code in the left pane and the corresponding // com-
ments in the right pane. Then if one wants to see the comments, one widens the right
pane accordingly. On the other hand, to view lines with many characters of code, the
// comments needn’t get in the way.

With TeX, the text surrounding the mathematics is part and parcel of the tech-
nical document, and TeX needs $’s to distinguish the two. These can be included in the
plain text, but it is somewhat ugly. The heuristics described in Sec. 5 go a long way in
determining what is mathematics and what is natural language. Accordingly, the ex-
port method consists of identifying the mathematical expressions and enclosing them
in $’s. The special symbols are translated to and from the standard TeX ASCII names
as for the program translations. Alternatively one can use LaTeX’s \[…\] open/close
math zone delimiters.

Export to MathML also requires knowing the start and end of a math zone. The
built-up functions can all be represented using MathML elements or combinations of
elements. The most glaring omission in Presentation MathML is that there’s no “n-ary”
element: one needs to use one of a variety of other elements like <msub> along with
the desired n-ary operator inside an <mo>. In addition one needs to tag numbers, op-
erators, and identifiers.

7. Conclusions
We have shown how with a few additions to Unicode, mathematical expressions

can usually be represented with a readable Unicode nearly plain-text format, which
we call UnicodeMath. The text consists of combinations of operators and operands. A

 Unicode Nearly Plain Text Encoding of Mathematics

38 Unicode Technical Note 28

simple operand consists of a span of non-operators, a definition that substantially re-
duces the number of parenthesis-override pairs and thereby increases the readability
of the plain text. To simplify the notation, operators have precedence values that con-
trol the association of operands with operators unless overruled by parentheses. Heu-
ristics can be applied to Unicode math to recognize what parts of a document are math
zones. This allows the Unicode plain text to be used in a variety of ways, including in
technical document preparation particularly for input purposes, symbolic manipula-
tion, and numerical computation.

A variety of syntax choices could be used for a linear format. The choices made
in this paper favor efficient input of mathematical formulae, sufficient generality to
support high-quality mathematical typography, the ability to round trip elegant math-
ematical text at least in a rich-text environment, and a format that resembles a real
mathematical notation. Obviously compromises between these goals had to be made.

The heuristics given for recognizing mathematical expressions work well, but
they are not infallible. An effective use of the heuristics would be by an autoformatting
wizard that delimits what it thinks are math zones with on/off codes or a character-
format attribute. The user could then overrule any incorrect choices. Once the math
zones are identified unequivocally, export to MathML, compilers, and other consum-
ers of mathematical expressions is straightforward.

For further discussion of UnicodeMath and related topics, see the Math in Office
blog and Chapter 6 in Creating Research and Scientific Documents with Microsoft
Word.

Acknowledgements
This work has benefitted from discussions with many people, notably PS Tech-

nical Word Processor users, Asmus Freytag, Barbara Beeton, Ken Whistler, Donald
Knuth, Jennifer Michelstein, Ethan Bernstein, Said Abou-Hallawa, Jason Rajtar, Yi
Zhang, Geraldine Wade, Ross Mills, John Hudson, Ron Whitney, Richard Lawrence,
Sergey Malkin, Alex Gil, Mikhail Baranovsky, Hon-Wah Chan, José Oglesby, Isao
Yamauchi, Yuriko Rosnow, Robert Miller, Joe Roni, Jinsong Yu, Sergey Genkin, Victor
Kozyrev, Andrei Burago, and Eliyezer Kohen. Earlier related work is listed in Ref. 10.

Appendix A. UnicodeMath Grammar
This grammar is simplified compared to the model in the text.

char ← Unicode character
space ← ASCII space (U+0020)
αASCII ← ASCII A-Z a-z
nASCII ← ASCII 0-9
αnMath ← Unicode math alphanumeric (U+1D400 – U+1D7FF with some

Letterlike symbols U+2102 – U+2134)
αnOther ← Unicode alphanumeric not including αnMath nor nASCII

https://blogs.msdn.microsoft.com/murrays/
https://blogs.msdn.microsoft.com/murrays/

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 39

αn ← αnMath | αnOther
diacritic ← Unicode combining mark
opArray ← ‘&’ | VT | ‘■’
opClose ← ‘)’ | ‘]’ | ‘}’ | ‘〉’
opCloser ← opClose | “\close”
opDecimal ← ‘.’ | ‘,’
opHbracket ← Unicode math horizontal bracket
opNary ← Unicode integrals, summation, product, and other nary ops
opOpen ← ‘(’ | ‘[’ | ‘{’ | ‘〈’
opOpener ← opOpen | “\open”

opOver ← ‘/’ | “\atop”
opBuildup ← ‘_’ | ‘^’ | ‘√’ | ‘∛’ | ‘∜’ | ‘□’ | ‘/’ | ‘|’ | opArray | opOpen | opClose |

opNary | opOver | opHbracket | opDecimal
other ← char – {αn + nASCII + diacritic + opBuildup + CR}

diacriticbase ← αn | nASCII | ‘(’ exp ‘)’
diacritics ← diacritic | diacritics diacritic
atom ← αn | diacriticbase diacritics
atoms ← atom | atoms atom
digits ← nASCII | digits nASCII
number ← digits | digits opDecimal digits

expBracket ← opOpener exp opCloser
 ← ‘||’ exp ‘||’
 ← ‘|’ exp ‘|’
word ← αASCII | word αASCII
scriptbase ← word | word nASCII | αnMath | number | other | expBracket |

opNary
soperand ← operand | ‘∞’ | ‘-’ operand | “-∞”
expSubsup ← scriptbase ‘_’ soperand ‘^’ soperand |
 scriptbase ‘^’ soperand ‘_’ soperand
expSubscript ← scriptbase ‘_’ soperand
expSuperscript ← scriptbase ‘^’ soperand
expScript ← expSubsup | expSubscript | expSuperscript

entity ← atoms | expBracket | number
factor ← entity | entity ‘!’ | entity “!!” | function | expScript
operand ← factor | operand factor
box ← ‘□’ operand
hbrack ← opHbracket operand
sqrt ← ‘√’ operand

 Unicode Nearly Plain Text Encoding of Mathematics

40 Unicode Technical Note 28

cubert ← ‘∛’ operand
fourthrt ← ‘∜’ operand
nthrt ← “√(” operand ‘&’ operand ‘)’
function ← sqrt | cubert | fourthrt | nthrt | box | hbrack
numerator ← operand | fraction
fraction ← numerator opOver operand

row ← exp | row ‘&’ exp
rows ← row | rows ‘@’ row
array ← “\array(” rows ‘)’

element ← fraction | operand | array
exp ← element | exp other element

Appendix B. Character Keywords and Properties
The following table gives the default math keywords, their target characters and
codes along with spacing and linear-format build-up properties. A full keyword con-
sists of a backslash followed by a keyword in the table.

Keyword Glyph Code Spacing LF Property
\above ┴ U+2534 ordinary subsup upper
\acute ́ U+0301 ordinary accent
\aleph ℵ U+2135 ordinary operand
\alpha α U+03B1 ordinary operand
\amalg ∐ U+2210 ordinary nary
\angle ∠ U+2220 relational normal
\aoint ∳ U+2233 ordinary nary
\approx ≈ U+2248 relational normal
\asmash ⬆ U+2B06 ordinary encl phantom
\ast ∗ U+2217 binary normal
\asymp ≍ U+224D relational normal
\atop ¦ U+00A6 ordinary divide
\Bar ̿ U+033F ordinary accent
\bar ̅ U+0305 ordinary accent
\because ∵ U+2235 relational normal
\begin 〖 U+3016 open open
\below ┬ U+252C ordinary subsup lower
\beta β U+03B2 ordinary operand

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 41

\beth ℶ U+2136 ordinary operand
\bot ⊥ U+22A5 relational normal
\bigcap ⋂ U+22C2 ordinary nary
\bigcup ⋃ U+22C2 ordinary nary
\bigodot ⨀ U+2A00 ordinary nary
\bigoplus ⨁ U+2A01 ordinary nary
\bigotimes ⨂ U+2A02 ordinary nary
\bigsqcup ⨆ U+2A06 ordinary nary
\biguplus ⨄ U+2A04 ordinary nary
\bigvee ⋁ U+22C1 ordinary nary
\bigwedge ⋀ U+22C0 ordinary nary
\bowtie ⋈ U+22C8 relational normal
\bot ⊥ U+22A5 relational normal
\box □ U+25A1 ordinary encl box
\bra ⟨ U+27E8 open open
\breve ̆ U+0306 ordinary accent
\bullet ∙ U+2219 binary normal
\cap ∩ U+2229 binary normal
\cbrt ∛ U+221B open encl root
\cdot ⋅ U+22C5 binary normal
\cdots ⋯ U+22EF ordinary normal
\check ̌ U+030C ordinary accent
\chi χ U+03C7 ordinary operand
\circ ∘ U+2218 binary normal
\close ┤ U+2524 ordinary close
\clubsuit ♣ U+2663 ordinary normal
\coint ∲ U+2232 ordinary nary
\cong ≅ U+2245 relational normal
\cup ∪ U+222A binary normal
\daleth ℸ U+2138 ordinary operand
\dashv ⊣ U+22A3 relational stretch horz
\Dd ⅅ U+2145 differential operand
\dd ⅆ U+2146 differential operand
\ddddot ⃜ U+20DC ordinary accent
\dddot ⃛ U+20DB ordinary accent

 Unicode Nearly Plain Text Encoding of Mathematics

42 Unicode Technical Note 28

\ddot ̈ U+0308 ordinary accent
\ddots ⋱ U+22F1 relational normal
\degree ° U+00B0 ordinary operand
\Delta Δ U+0394 ordinary operand
\delta δ U+03B4 ordinary operand
\diamond ⋄ U+22C4 binary normal
\diamondsuit ♢ U+2662 ordinary normal
\div ÷ U+00F7 binary normal
\dot ̇ U+0307 ordinary accent
\doteq ≐ U+2250 relational normal
\dots … U+2026 ordinary normal
\Downarrow ⇓ U+21D3 relational normal
\downarrow ↓ U+2193 relational normal
\dsmash ⬇ U+2B07 ordinary encl phantom
\ee ⅇ U+2147 ordinary operand
\ell ℓ U+2113 ordinary operand
\emptyset ∅ U+2205 unary operand
\emsp U+2003 skip normal
\end 〗 U+3017 close close
\ensp U+2002 skip normal
\epsilon ϵ U+03F5 ordinary operand
\eqarray ■ U+2588 ordinary encl eqarray
\eqno # U+0023 ordinary marker
\equiv ≡ U+2261 relational normal
\eta η U+03B7 ordinary operand
\exists ∃ U+2203 unary normal
\forall ∀ U+2200 unary normal
\funcapply U+2061 binary subsupFA
\Gamma Γ U+0393 ordinary operand
\gamma γ U+03B3 ordinary operand
\ge ≥ U+2265 relational normal
\geq ≥ U+2265 relational normal
\gets ← U+2190 ordinary stretch horiz
\gg ≫ U+226B relational normal
\gimel ℷ U+2137 ordinary operand

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 43

\grave ̀ U+0300 ordinary accent
\hairsp U+200A skip normal
\hat ̂ U+0302 ordinary accent
\hbar ℏ U+210F ordinary operand
\heartsuit ♡ U+2661 ordinary normal
\hookleftarrow ↩ U+21A9 relational stretch horiz
\hookrightarrow ↪ U+21AA relational stretch horiz
\hphantom ⬄ U+2B04 ordinary encl phantom
\hsmash ⬌ U+2B0C ordinary encl phantom
\hvec ⃑ U+20D1 ordinary accent
\ii ⅈ U+2148 ordinary operand
\iiiint ⨌ U+2A0C ordinary nary
\iiint ∭ U+222D ordinary nary
\iint ∬ U+222C ordinary nary
\Im ℑ U+2111 ordinary operand
\imath ı U+0131 ordinary operand
\in ∈ U+2208 relational normal
\inc ∆ U+2206 unary operand
\infty ∞ U+221E ordinary operand
\int ∫ U+222B ordinary nary
\iota ι U+03B9 ordinary operand
\jj ⅉ U+2149 ordinary operand
\jmath ȷ U+0237 ordinary operand
\kappa κ U+03BA ordinary operand
\ket ⟩ U+27E9 close close
\Lambda Λ U+039B ordinary operand
\lambda λ U+03BB ordinary operand
\langle ⟨ U+27E8 open open
\lbrace { U+007B open open
\lbrack [U+005B open open
\lceil ⌈ U+2308 open open
\ldiv ∕ U+2215 binary divide
\ldots … U+2026 ordinary normal
\le ≤ U+2264 relational normal
\Leftarrow ⇐ U+21D0 relational stretch horiz

 Unicode Nearly Plain Text Encoding of Mathematics

44 Unicode Technical Note 28

\leftarrow ← U+2190 relational stretch horiz
\leftharpoondown ↽ U+21BD relational stretch horiz
\leftharpoonup ↼ U+21BC relational stretch horiz
\Leftrightarrow ⇔ U+21D4 relational stretch horiz
\leftrightarrow ↔ U+2194 relational stretch horiz
\leq ≤ U+2264 relational normal
\lfloor ⌊ U+230A open open
\ll ≪ U+226A relational normal
\Longleftarrow ⟸ U+27F8 relational normal
\longleftarrow ⟵ U+27F5 relational normal
\Longleftrightarrow ⟺ U+27FA relational normal
\longleftrightarrow ⟷ U+27F7 relational normal
\Longrightarrow ⟹ U+27F9 relational normal
\longrightarrow ⟶ U+27F6 relational normal
\mapsto ↦ U+21A6 relational stretch horiz
\matrix ■ U+25A0 ordinary encl matrix
\medsp U+205F Ordinary normal
\mid ∣ U+2223 relational list delims
\models ⊨ U+22A8 relational stretch horz
\mp ∓ U+2213 unary/binary unary/binary
\mu μ U+03BC ordinary operand
\nabla ∇ U+2207 unary operand
\naryand ▒ U+2592 ordinary normal
\nbsp U+00A0 skip normal
\ndiv ⊘ U+2298 binary divide
\ne ≠ U+2260 relational normal
\nearrow ↗ U+2197 relational normal
\neg ¬ U+00AC unary normal
\neq ≠ U+2260 relational normal
\ni ∋ U+220B relational normal
\norm ‖ U+2016 ordinary open/close
\nu ν U+03BD ordinary operand
\nwarrow ↖ U+2196 relational normal
\odot ⊙ U+2299 binary normal
\of ▒ U+2592 ordinary normal

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 45

\oiiint ∰ U+2230 ordinary nary
\oiint ∯ U+222F ordinary nary
\oint ∮ U+222E ordinary nary
\Omega Ω U+03A9 ordinary operand
\omega ω U+03C9 ordinary operand
\ominus ⊖ U+2296 binary normal
\open ├ U+251C ordinary open
\oplus ⊕ U+2295 binary normal
\oslash ⊘ U+2298 binary normal
\otimes ⊗ U+2297 binary normal
\over / U+002F binarynsp divide
\overbar ¯ U+00AF ordinary encl overbar
\overbrace ⏞ U+23DE ordinary stretch over
\overparen ⏜ U+23DC ordinary stretch over
\parallel ∥ U+2225 relational normal
\partial ∂ U+2202 unary operand
\phantom ⟡ U+27E1 ordinary encl phantom
\Phi Φ U+03A6 ordinary operand
\phi ϕ U+03D5 ordinary operand
\Pi Π U+03A0 ordinary operand
\pi π U+03C0 ordinary operand
\pm ± U+00B1 unary/binary unary/binary
\pppprime ⁗ U+2057 ordinary Unisubsup
\ppprime ‴ U+2034 ordinary Unisubsup
\pprime ″ U+2033 ordinary Unisubsup
\prcue ≼ U+227C relational normal
\prec ≺ U+227A relational normal
\preceq ⪯ U+2AAF relational normal
\preccurlyeq ≼ U+227C relational normal
\prime ′ U+2032 ordinary Unisubsup
\prod ∏ U+220F ordinary nary
\propto ∝ U+221D relational normal
\Psi Ψ U+03A8 ordinary operand
\psi ψ U+03C8 ordinary operand
\qdrt ∜ U+221C open encl root

 Unicode Nearly Plain Text Encoding of Mathematics

46 Unicode Technical Note 28

\rangle ⟩ U+27E9 close close
\ratio ∶ U+2236 relational normal
\rbrace } U+007D close close
\rbrack] U+005D close close
\rceil ⌉ U+2309 close close
\rddots ⋰ U+22F0 relational normal
\Re ℜ U+211C ordinary operand
\rect ▭ U+25AD ordinary encl rect
\rfloor ⌋ U+230B close close
\rho ρ U+03C1 ordinary operand
\Rightarrow ⇒ U+21D2 relational stretch horiz
\rightarrow → U+2192 relational stretch horiz
\rightharpoondown ⇁ U+21C1 relational stretch horiz
\rightharpoonup ⇀ U+21C0 relational stretch horiz
\rrect ▢ U+25A2 ordinary encl rnd rect
\sdiv ⁄ U+2044 binarynsp divide
\searrow ↙ U+2198 relational normal
\setminus ∖ U+2216 binary normal
\Sigma Σ U+03A3 ordinary operand
\sigma σ U+03C3 ordinary operand
\sim ∼ U+223C relational normal
\simeq ≃ U+2243 relational normal
\smash ⬍ U+2B0D ordinary encl phantom
\spadesuit ♠ U+2660 ordinary normal
\sqcap ⊓ U+2293 binary normal
\sqcup ⊔ U+2294 binary normal
\sqrt √ U+221A open encl root
\sqsubseteq ⊑ U+2291 relational normal
\sqsuperseteq ⊒ U+2292 relational normal
\star ⋆ U+22C6 binary normal
\subset ⊂ U+2282 relational normal
\subseteq ⊆ U+2286 relational normal
\succ ≻ U+227B relational normal
\succeq ≽ U+227D relational normal
\sum ∑ U+2211 ordinary nary

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 47

\superset ⊃ U+2283 relational normal
\superseteq ⊇ U+2287 relational normal
\swarrow ↘ U+2199 relational normal
\tau τ U+03C4 ordinary operand
\therefore ∴ U+2234 relational normal
\Theta Θ U+0398 ordinary operand
\theta θ U+03B8 ordinary operand
\thicksp U+2005 skip normal
\thinsp U+2006 skip normal
\tilde ̃ U+0303 ordinary accent
\times × U+00D7 binarynsp normal
\to → U+2192 relational stretch horiz
\top ⊤ U+22A4 relational normal
\tvec ⃡ U+20E1 ordinary accent
\underbar ▁ U+2581 ordinary encl un-

derbar \underbrace ⏟ U+23DF ordinary stretch under
\underparen ⏝ U+23DD ordinary stretch under
\Uparrow ⇑ U+21D1 relational normal
\uparrow ↑ U+2191 relational normal
\Updownarrow ⇕ U+21D5 relational normal
\updownarrow ↕ U+2195 relational normal
\uplus ⊎ U+228E binary normal
\Upsilon Υ U+03A5 ordinary operand
\upsilon υ U+03C5 ordinary operand
\varepsilon ε U+03B5 ordinary operand
\varphi φ U+03C6 ordinary operand
\varpi ϖ U+03D6 ordinary operand
\varrho ϱ U+03F1 ordinary operand
\varsigma ς U+03C2 ordinary operand
\vartheta ϑ U+03D1 ordinary operand
\vbar │ U+2502 ordinary list delims
\vdash ⊢ U+22A2 relational stretch horz
\vdots ⋮ U+22EE relational normal
\vec ⃗ U+20D7 ordinary accent
\vee ∨ U+2228 binary normal

 Unicode Nearly Plain Text Encoding of Mathematics

48 Unicode Technical Note 28

\Vert ‖ U+2016 ordinary open/close
\vert | U+007C ordinary open/close
\vphantom ⇳ U+21F3 relational encl phantom
\vthicksp U+2004 skip normal
\wedge ∧ U+2227 binary normal
\wp ℘ U+2118 ordinary operand
\wr ≀ U+2240 binary normal
\Xi Ξ U+039E ordinary operand
\xi ξ U+03BE ordinary operand
\zeta ζ U+03B6 ordinary operand
\zwnj U+200C ordinary normal
\zwsp U+200B ordinary normal

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note
28 49

Version Differences
The differences between Version 1 and 2 of this paper are largely cosmetic, but

there were enough changes in Version 2 to merit a new number. Version 2 is mostly
implemented in Microsoft Word 2007, where it is referred to as the “linear format”.
Typing UnicodeMath in Word 2007 or later results in “formula autobuildup”, that is,
automatic conversion to the built-up format of expressions as their syntax becomes
unambiguous.

In this document, features added in Version 3 are identified as such. These fea-
tures are mostly implemented in the Microsoft Office applications Word, PowerPoint,
Excel, and OneNote (Versions 2010 and later). Typically the additions offer conven-
ience over ways needed in Version 2, but no addition is necessary and the Version 2
syntax remains valid in Version 3. The additions were often inspired by [La]TeX. Ex-
amples of simplified input are \choose for binomial coefficients, \cases for alternative
definitions, \pmatrix for parenthesized matrices, \middle to define a character as a
bracket separator, a simpler prescript notation, \root n\of x notation for nth roots,
equation alignment (see Sec. 3.23), size overrides (see Sec. 3.24), and simple negated
operator input (see Sec. 4.1). There are also numerous cosmetic changes.

Version 3.1 is mostly a refining of Version 3.0, bringing a number of topics up to
date and using the name UnicodeMath instead of Unicode linear format.

References
1. The Unicode Standard http://www.unicode.org/versions/latest/; see also2

.

2. Barbara Beeton, Asmus Freytag, Murray Sargent III, Unicode Technical Report
#25 “Unicode Support for Mathematics”, http://www.unicode.org/reports/tr25

3. Leslie Lamport, LaTeX: A Document Preparation System, User’s Guide & Reference
Manual, 2nd edition (Addison-Wesley, 1994; ISBN 1-201-52983-1)

4. Donald E. Knuth, The TeXbook, (Reading, Massachusetts: Addison-Wesley 1984)

5. Mathematical Markup Language (MathML) http://www.w3.org/Math/

6. For example, UnicodeMath is used for keyboard entry of mathematical expres-
sions in Microsoft Word, PowerPoint, OneNote and Excel.

7. Bertrand Russell, in his Introduction to Tractatus Logico-Philosophicus by Lugwig
Wittgenstein, Routledge and Kegan Paul, London 1922 (also currently available
at http://www.kfs.org/~jonathan/witt/tlph.html).

8. PS Technical Word Processor, Scroll Systems, Inc. (1989). This WP used a non-
Unicode version of UnicodeMath.

9. P. Meystre and M. Sargent III (1991), Elements of Quantum Optics, Springer-Ver-
lag

http://www.unicode.org/versions/latest/
http://www.unicode.org/reports/tr25
http://www.w3.org/Math/
http://www.kfs.org/~jonathan/witt/tlph.html

 Unicode Nearly Plain Text Encoding of Mathematics

50 Unicode Technical Note 28

10. Some of these ideas were discussed in the following presentations: M. Sargent
III, Unicode, Rich Text, and Mathematics, 7th International Unicode Conference,
San Jose, California, Sept (1995); Murray Sargent III and Angel L. Diaz, MathML
and Unicode, 15th International Unicode Conference, San Jose, California, Sept
(1999); Murray Sargent III, Unicode Plain Text Encoding of Mathematics, 16th In-
ternational Unicode Conference, Amsterdam, Holland, March (2000); Murray
Sargent III, Unicode Support for Mathematics, 17th International Unicode Confer-
ence, San Jose, California, Sept (2000); Murray Sargent III, Unicode Support for
Mathematics, 22nd International Unicode Conference, San Jose, California, Sept
(2002); Murray Sargent III, Unicode Nearly Plain-Text Encoding of Mathematics,
26th Internationalization and Unicode Conference, San Jose, California, Sept
(2004). Murray Sargent III, Editing and Display of Mathematics using Unicode,
29th Internationalization and Unicode Conference, San Francisco, California,
March (2006). Murray Sargent III, Mathematical Input Methods, 31st Internation-
alization and Unicode Conference, San Jose, California, Oct (2007). Murray Sar-
gent III, Math Editing and Display in Microsoft Office, 33rd Internationalization
and Unicode Conference, San José, California, Sept (2009).

11. Alexander Mamishev, Murray Sargent (2103), Creating Research and Scientific
Documents with Microsoft Word, Microsoft Press, Redmond, WA.

This document was prepared using Microsoft Word 2016 with Cambria and Cam-
bria Math fonts.

